
Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

rhetorical code studies

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Sweetland Digital rhetoric collaborative

Series Editors:
Anne Ruggles Gere, University of Michigan

Naomi Silver, University of Michigan

The Sweetland Digital Rhetoric Collaborative Book Series publishes texts that investigate the
multiliteracies of digitally mediated spaces both within academia as well as other contexts.

Rhetorical Code Studies: Discovering Arguments in and around Code
 Kevin Brock

Developing Writers in Higher Education: A Longitudinal Study
 Anne Ruggles Gere, Editor

Sites of Translation: What Multilinguals Can Teach Us about Digital Writing and Rhetoric
 Laura Gonzales

Rhizcomics: Rhetoric, Technology, and New Media Composition
 Jason Helms

Making Space: Writing, Instruction, Infrastrucure, and Multiliteracies
 James P. Purdy and Dànielle Nicole DeVoss, Editors

Digital Samaritans: Rhetorical Delivery and Engagement in the Digital Humanities
 Jim Ridolfo

diGitalculturebooks, an imprint of the University of
Michigan Press, is dedicated to publishing work in new media
studies and the emerging field of digital humanities.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetorical Code Studies
discovering arguments
in and around code

Kevin Brock

University of Michigan Press

ann arbor

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Copyright © 2019 by Kevin Brock
Some rights reserved

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International
License. Note to users: A Creative Commons license is only valid when it is applied by the person
or entity that holds rights to the licensed work. Works may contain components (e.g., photo-
graphs, illustrations, or quotations) to which the rightsholder in the work cannot apply the
license. It is ultimately your responsibility to independently evaluate the copyright status of any
work or component part of a work you use, in light of your intended use. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/4.0/

Published in the United States of America by the
University of Michigan Press
Manufactured in the United States of America
Printed on acid-free paper
First published February 2019

A CIP catalog record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names:  Brock, Kevin, author.
Title:  Rhetorical code studies : discovering arguments in and around code / Kevin Brock.
Description:  Ann Arbor : University of Michigan Press, [2019]  |  Series: Sweetland digital

rhetoric collaborative series  |  Includes bibliographical references and index.  |
Identifiers:  lccn 2018043066 (print)  |  lccn 2018049477 (ebook)  |  isbn 9780472131273

(hardcover : acid-free paper)  |  isbn 9780472125005 (ebook)  |  isbn 9780472901043 (OA)
Subjects:  LCSH: Coding theory.  |  Rhetoric—Data processing.  |  Software engineering—

Psychological aspects.  |  Computer algorithms—Psychological aspects.  |  Online social
networks.

Classification:  LCC qa268 (ebook)  |  LCC qa268 .b76  2019 (print)  |  DDC 005.13—dc23
LC record available at https://lccn.loc.gov/2018043066

https://doi.org/10.3998/mpub.10019291

The publisher gratefully acknowledges the support of the Sweetland Center for Writing in
making this book possible.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

To Erin, my best friend and partner in all things.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Acknowledgments

This project, like so many of the cases discussed in the following pages,
could not have been possible without myriad collaborators, colleagues,
and mentors, all of whom have profoundly impacted my life through their
assistance and friendship. I cannot overstate the gratitude I feel for all the
time, energy, and consideration that has been shared with me. At the same
time, I recognize my words here will be inadequate in acknowledging ev-
eryone who has helped me and in describing the impact they have had on
me and this book.

I want to begin by offering my deepest thanks to Nancy Penrose, who
took a chance on me when I was a struggling master’s student who felt
ambivalent toward writing and its study. At the time, I did not know just
how significantly my life would change by turning my focus toward rheto-
ric and composition. Without Nancy’s support and patience with my gain-
ing a grasp of the field, I would never have been able to pursue this career
trajectory.

I also owe a considerable debt to the faculty with whom I studied in the
Communication, Rhetoric, and Digital Media doctoral program at North
Carolina State University; their guidance helped me develop the ideas cen-
tral to my argument throughout this book. David M. Rieder offered invalu-
able and enthusiastic input throughout my time in the program. Along-
side David, Susan Miller-Cochran, Jason Swarts, and Kenneth Zagacki all
shared with me their incredible insight and feedback on my dissertation,
which served as an early attempt at articulating my argument in this book.
In addition, the courses I took with Carolyn R. Miller, Chris Anson, Susan
Katz, Kelly Albada, David Berube, and Denise Gonzales Crisp helped me
further refine the theories and methodologies informing my approach to
communication, code, and software development.

While at North Carolina State, I was lucky to explore interdisciplinary
inquiry alongside an excellent body of emerging scholars in the CRDM
program, especially Jen Ware, Wendi Sierra, Dana Gierdowski, Robin

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

viii  •  Acknowledgments

Snead, Christopher Cummings, Lauren Clark, Seth Mulliken, Kati Fargo
Ahern, Jordan Frith, Jason Kalin, David Gruber, Matt Morain, Dawn Shep-
herd, Kathy Oswald, Shayne Pepper, Ruffin Bailey, Kelly Norris Martin,
Anna Turnage, Heidi von Ludewig, Ashley Rose Mehlenbacher, Kate Mad-
dalena, Fernanda Duarte, Brent Simoneaux, Molly Hartzog, Jeff Swift,
Elizabeth Johnson-Young, Keon Pettiway, Alex Monea, Elizabeth Pitts,
Josh Reeves, and Gwendolynne Reid.

My colleagues at the University of South Carolina have been a source of
tremendous intellectual and moral support. Byron Hawk, Hannah Rule,
John Muckelbauer, Chris Holcomb, Christy Friend, Pat Gehrke, Gina
Ercolini, Misty Fenske, and Erik Doxtader have guided me through this
project and the balancing act that an early-stage academic career entails.
Undergraduate and graduate students at South Carolina, in and out of the
classroom, have also contributed to my crafting a fuller articulation of my
arguments in this book. They include Gerald S. Jackson, Cynthia Bate-
man Jackson, Trevor C. Meyer, Adam S. Lerner, Ragan Glover-Rijkse, Ben
Harley, Jonathan Maricle, Adam Padgett, Kelly L. Wheeler, Sebastian Ivy,
Amber Lee, Ashley Walker, and Christian Smith. I am grateful to you all
for allowing me to discuss my research with you during our time together.

Over the past decade, numerous colleagues from across the United
States have graciously contributed to the continued development of my
research. Jim Brown and Annette Vee have been mentors whose input
greatly impacted more of my work than I could concisely describe, while
Doug Eyman, Chris Lindgren, Estee Beck, Steve Holmes, Kristin Arola,
Casey Boyle, Liz Losh, John Gallagher, Mark Marino, Cheryl Ball, Karl
Stolley, Bill Hart-Davidson, Ryan Omizo, Brandee Easter, Collin Brooke,
and Rachael Sullivan have all challenged me in productive ways to refine
my arguments and explore new directions for the rhetorical study of soft-
ware. I am grateful for their many thoughtful engagements with me. I also
especially want to thank Matt Davis for the innumerable hours he spent
reading and reviewing my drafts. This would be a much weaker book
without his keen and considerate insight.

Naomi Silver, Anne Ruggles Gere, the members of the Sweetland Digi-
tal Rhetoric Collective editorial board, and Mary Francis and the Univer-
sity of Michigan Press provided me with insightful and compassionate
support for this project and its publication. I am also greatly indebted to
the reviewers who examined an initial draft of the manuscript, as their
feedback guided my argument to evolve considerably and in ways I had

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Acknowledgments  •  ix

not initially anticipated. I did not ever think I would enjoy so much work-
ing with a press.

Finally, I want to thank my patient friends and family for supporting
my efforts and tolerating my distant- and absent-minded behavior while I
worked, especially my wife Erin and my mother Cindy. David, Patrick, and
Jim Brock were reliable sources of needed levity and distracting, although
always informative, debate. My friends Jonathan, Adrianne, Gabriel,
Scott, George, Pat, Dustin, and Ibrahim always made themselves available
for whatever assistance they could provide. I don’t know how you all have
put up with me, but I will always adore you for it.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Contents

List of Tables� xiii
List of Practice Scripts� xv
List of Figures� xvii

Introduction� 1

	 1	 Toward the Rhetorical Study of Code� 9
What Does Rhetorical Code Studies Involve?� 12
Digital Rhetoric� 15
Critical Code Studies� 21
Software Studies� 23
Technical Communication� 27
Rhetorical Code Studies’ Gains and Contributions� 29

	 2	 Rhetoric and the Algorithm� 33
From Algorithm to Algorithmic Culture� 33
Algorithmic Criticism in the Humanities� 39
Arguments in Code as Algorithmic Meaning Making� 51
Conclusions� 68

	 3	� “I Have No Damn Idea Why This Is So Convoluted”:
Analyzing Arguments Surrounding Code� 71
Rhetorical Scholarship on Online Discourse Communities� 72
The Rhetorical and Social Makeup of Open Source
  Software Development Communities� 75
Developers’ Rhetorical Awareness of Their Coding Practices� 95
Conclusions� 112

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

	 4	 Developing Arguments in Code: The Case of Mozilla Firefox� 115
Mozilla Firefox: A Code Study� 120
Conclusions� 149

	 5	 Composing in Code: A Brief Engagement with JavaScript� 151
Procedural Progymnasmata� 152
Exercises in Repetition: Looping� 157
Exercises in Style: FizzBuzz� 161
Exercises in Repetition: Object Creation� 166
Exercises in Arrangement: Bubble Sort� 170
Exercises in Invention: enthymemeGenerator.js� 173
Conclusions� 179

	 6	 Conclusions� 181
Rhetorical Code Studies Thus Far� 182
Assessing Computational Action� 186
A Future for Rhetorical Code Studies� 190

Bibliography� 193
Index� 207

Digital materials related to this title can be found on the Fulcrum platform
via the following citable URL: https://doi.org/10.3998/mpub.10019291

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Tables

1.1. �Excerpt from Heartbleed patch (t1_lib.c) by snhenson et al.
(2015)� 10

2.1. �Excerpted lists of term frequency from Woolf ’s The Waves,
compiled by Ramsay (2011)� 48

2.2. Two example FizzBuzz loops in JavaScript� 58
2.3. Two example FizzBuzz loops in Ruby� 59
2.4. �Excerpted HashMap example code by Shiffman (2014)

written for Processing, from “HashMapClass.pde”� 64
3.1. �Example comments sanitized from Netscape Navigator 4.x

(1998)� 91
4.1. Proposed Android ADB change by gbrownmozilla (2011)� 131
4.2. �Three iterations of Firefox startup home page code (2006a,

2006b, 2010)� 133
4.3. �Firefox pop-up removal code in JavaScript, 2010 (upper)

and 2013 (lower)� 137
4.4. �Example of Firefox spam filter code in a processNext()

function� 143
4.5. Example of object creation in JavaScript� 147
4.6. �Example of repetition in Firefox’s code related to browser

size calculations� 148

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Practice Scripts

5.1. Simple statement combination� 155
5.2. Conditional statement syntax� 156
5.3. Revised simple statement combination� 157
5.4. Non-looping iteration through the alphabet� 158
5.5. Looping iteration through the alphabet� 159
5.6. Looping iteration backwards through the alphabet� 160
5.7. �Looping iteration through a randomized set of

alphabet elements� 161
5.8. “FizzBuzz” with inclusive conditional loops� 162
5.9. “FizzBuzz” with exclusive conditional loops� 163
5.10. “FizzBuzz” with static array elements� 164
5.11. Modular/scalable “FizzBuzz” program� 165
5.12. Simple class construction and object initialization� 167
5.13. More complex class and object creation� 168
5.14. Simple “Bubble Sort” program� 172
5.15. “Bubble Sort” with JavaScript sort() method� 173
5.16. Enthymeme generator built on earlier object creation code� 175

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Figures

2.1. Example expression of Shiffman’s (2014) HashMap code� 66
2.2. Later expression of Shiffman’s (2014) HashMap code� 67

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Introduction

For several days in May 2017, approximately 200,000 computer systems
were infected by “WannaCry,” a ransomware attack that exploited a set of
security vulnerabilities in the Microsoft Windows operating system. Once
WannaCry gained access to a new system, it would check if a given website
domain was registered. If the domain was not registered, WannaCry would
encrypt data on the system’s drive(s) and then propagate itself randomly
to other systems via the Internet and any local network connections. Then,
WannaCry displayed a message to users of the system that their data was
being held hostage and that a ransom could be paid via Bitcoin payments
to specific recipient addresses (Khomami and Solon 2017; Lee et al. 2017).

While security patches were quickly developed and distributed to fix
the vulnerabilities WannaCry exploited, a pair of key clues regarding its
functionality and authorship were identified by attending to WannaCry’s
algorithmic activity. First, an anonymous individual, recognizing that the
ransomware attempted to contact a nonexistent domain as part of its ini-
tial activity, registered that particular domain name. The effect was that of
a “kill switch,” immediately stopping thousands of WannaCry iterations
per second from continuing on to their encryption processes (Khomami
and Solon 2017). Second, the ransom messages displayed by WannaCry
were analyzed by linguistic experts, who determined that the program’s
author(s) were most likely nonnative English speakers who used auto-
mated translation software (Leyden 2017). Further, the analysts identified
the authors as most likely being Chinese in origin, although North Korea
was later credited with its construction (Bossert 2017).

Both of these interpretive responses to WannaCry highlight the rhe-
torical nature of the ransomware program and, by association, of software
and code more broadly. A consequence of registering the “kill switch” do-
main transformed WannaCry’s ability to propagate across networks and

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

2  •  rhetorical code studies

Revised PagesMaster Pages

hold further users’ data hostage. An identification of the authors’ location
facilitated collaboration among international intelligence organizations
as well as cybersecurity experts, in case political action became necessary
to resolve the situation. The rhetorical dimensions of all these acts—of
WannaCry’s composition and proliferation as well as the analyses and
responses that emerged to understand and combat it—can tell us much
about how to assume more nuanced and ethical approaches to creating,
using, and discussing software in public, profession, and academic con-
texts alike.

Understanding code as rhetorical and not merely instrumental is not
new in the fields of rhetoric and technical communication, however.
Nearly forty years ago, Miller (1979) argued that technical writing should
be understood and taught not as a merely instrumental skill set for com-
municating information (that is, as a kind of transparent and neutral ve-
hicle for information) but instead as a highly rhetorical means of creating
knowledge that allowed writers to construct and participate in particular
communities. Miller suggested that the ways technical documents were
composed and designed were as important and inherently meaningful as
the content described therein.

We can recognize a similar exigence in current scholarly and public
conversations regarding digital media and their uses, from WannaCry
to far less terrifying contexts. Such conversations tend to focus on the
capacity of software for incredible social and political change, from the
role of social media in organizing protests during the “Arab Spring”
of 2010–2012, to the impact of high-frequency trading on the global
market, to the uncannily precise targeting by various companies (e.g.,
Target or Amazon) of individual consumers with customized advertise-
ments and sales. Other capacities for change include broadening access
to technologies that augment individuals’ abilities to communicate in
diverse ways with larger and more geographically distributed audiences,
including global positioning system technology, YouTube videos, peer-
to-peer file sharing networks, 3-D printers, and online financial transac-
tions. Alongside the conversations about these media, others also occur
that focus on education and vocational training, with an almost singular
goal of building a larger and, in many cases, explicitly more diverse and
inclusive population of future programmers whose skills will certainly
be valuable in a software-driven world.

Unfortunately, outside of specific circles, these various conversations
on digital media—whether education-oriented or not—tend to focus on

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Introduction  •  3

Master Pages

software as an instrumental tool and thus ignore or otherwise fail to ad-
dress the role that meaning making, and in particular meaning made in
and around code, plays in the development and use of software. Code, how-
ever, can also be approached rhetorically and critically in reflection of its
meaningful nature. An acknowledgment of the roles that code and its
authors play is important for moving forward in any of these aforemen-
tioned conversations, not only for identifying what has happened or is
happening but also how to induce desired change to the status quo.

It is often only after the fact that various social, cultural, and political
problems reflected in how a given software program has been designed to
function—whether recognized beforehand or not—are publicly acknowl-
edged and addressed. Among the myriad examples of digital fiascos and
post hoc revelations about their subjects’ limitations include the Nikon
camera software that told Asian users they were blinking in photos (Rose
2010), with the software allegedly not taking into account different eth-
nicities’ facial structures. In another example, Facebook’s “graph search”
technology enabled users to conduct potentially disturbing surveillance of
their neighbors, such as combining searches for “married people” with
those users who liked “prostitutes” and providing searchers with the abil-
ity to contact those users’ spouses (Brock and Shepherd 2016). “Tay,” a
Twitter bot developed by Microsoft, shortly after its activation began to
post racist content to other users of the platform. It was discovered that
the bot had built a vocabulary of hate speech from public Twitter data,
with a substantial amount of hateful language directed toward Tay specifi-
cally to “teach” it that language (Mason 2016). In each of these cases, it is
impossible to be certain about the extent to which these issues may have
been anticipated, but we have an ample supply of public backlash and crit-
icism over the released versions of these programs and the impact they
had on their audiences.

Discussions among scholars of rhetoric, technical communication,
and software studies about digital media and technology tend to be excep-
tions to the popular conversations described above in that scholarly dis-
cussions stress critical reflection on the social and cultural implications of
particular media or situations wherein they are used. But such discussions
infrequently focus directly on the software used for particular media and
even less frequently on the code that drives that software. Further, there is
a divide separating those voices who would increase access and exposure
to the instrumental application of programming-related education and
those voices who would facilitate critical and rhetorical awareness and

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

4  •  rhetorical code studies

Revised PagesMaster Pages

employment of code and its procedural logic for particular civic, political,
and economic ends, attending to the myriad dimensions that influence
and are influenced by the construction of software programs.

This is not to say that efforts to bring together these groups of conver-
sations about critical, rhetorical, and instrumental approaches to studying
digital technology are not attempted more broadly. Indeed, a great many
public opinion pieces by media critics, programmers, and educators have
championed various fusions of instrumental code composing or “mak-
ing” with critical reflection on those composing activities. Similarly, nu-
merous programming platforms have been developed to make software
development more accessible and palatable to wider user populations
than might otherwise encounter them, such as Scratch, Codecademy, Pro-
cessing, or Hackety Hack. As Ford (2015) explained, it tends to be much
easier to develop more accessible ways to teach people existing languages
than to develop new languages or change existing ones:

Making a new [programming] language is hard. Making a popular
language is much harder still and requires the smile of fortune. And
changing the way a popular language works appears to be one of the
most difficult things humans can do, requiring years of coordination
to make the standards align. Languages are large, complex, dynamic
expressions of human culture.

Ford’s description of programming languages as “large, complex, dy-
namic expressions of human culture” is incredibly important. Ford em-
phasized the influence of human culture on the creation of such languages,
since their incorporation—and exclusion—of particular values, perspec-
tives, and styles are often elided in discussions of particular languages’
computational efficiency or “elegance,” terms examined in more detail
later but that, generally speaking, emphasize technological speed over
human dimensions of influence on the composition of a given code text.
Of particular note for efforts like Scratch and others is the broad push
to reframe STEM (science, technology, engineering, math) education as
STEAM (science, technology, engineering, arts, math) so as to build on
the widespread support for STEM initiatives. These initiatives, however,
tend to avoid direct engagements with rhetoric and code in favor of its po-
litical or cultural impact in a given context.

This latter avoidance of direct engagement with code (as both text and
activity) is of central significance to the argument I make throughout this

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Introduction  •  5

Master Pages

text, as I want to draw attention to the rhetorical activities in which pro-
grammers engage, in and around code texts, as they develop software.1

Among the most important public outreach tasks a rhetorician who stud-
ies digital technologies can engage in is helping diverse audiences under-
stand not only how those technologies influence audiences toward par-
ticular actions but how those same technologies are designed and constructed
to influence them. Among the most powerful ways to do this, I suggest, is
to draw attention to the appeals and strategies employed in the construc-
tion and dissemination of software code among programmers of varying
expertise and involvement in a given project. It is these individuals and
groups, after all, who decide not only what a program will do but how
they will go about making it perform those tasks. The communication
that takes place in the lines of code they write—along with communica-
tion in code comments, emails, bulletin board posts, and other venues—
illuminates a great deal about the kinds of meaning programmers can and
choose to create in and through code. Given the ubiquity of digital tech-
nology for daily tasks and phenomena, it is imperative that rhetoricians
work not only to recognize what occurs rhetorically in the current para-
digm of programming education and exercise but to become involved in
its development toward a more explicitly and intently meaningful form of
communication.

In this book, I demonstrate how a shift in code-related orientation
toward the rhetorical opens up new opportunities for critical inquiry, as
well as how this shift is already taking place. In chapter 1, I map the vari-
ous academic conversations in related fields within the humanities that
have some overlap with the study of rhetoric and digital media, includ-
ing software studies, critical code studies, and technical communication.
From this mapping, I argue for the further cultivation and exploration of
an emerging field, which I call “rhetorical code studies,” that centers its
focus on considerations of software code as a form of and site for rhetori-
cal communication.

In chapter 2, I examine the historical relationship between algorithms
and rhetorical invention that extends back far beyond digital technologies.

1.  Throughout the book but primarily in chapters 3 and 4, I discuss posts and code ex-
cerpts by a number of users on various software versioning system-related websites. I refer
to the real names of those users who are either very well-known in the industry or whose
usernames are identical to their real names; otherwise, I refer to users by the username they
employ on the website. While in some instances a real name might be inferred, I have opted
to call users by the monikers by which they wish to identify themselves on those sites.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

6  •  rhetorical code studies

Revised PagesMaster Pages

That is, we have a long tradition of critical and humanistic approaches to
mathematics and logic on which to build a rhetorical understanding of
code and the computation it describes. From this foundation, I examine
how the procedural logic of algorithms functions for rhetorical ends in
software code, and three example types of programs demonstrate some,
but hardly all, of these ends in action.

Chapter 3 is centered on the discourse that surrounds code, such as
code comments (lines of text in code that are not interpreted by a com-
puter), email conversations, and other forums dedicated to development
project discussions. If code functions as meaningful communication, as
I posit it does—inherently—then the sorts of meaning making that occur
in genres connected to and surrounding code can offer insight into pro-
grammers’ goals for particular computational tasks and types of actions
they intend to induce through the use of their software. While there is not
always a 1:1 relationship between what is said and done in code with what
is said and done about it, we can nonetheless learn much by examining
what connections can be recognized.

In chapter 4, I build on the argument established in the previous chap-
ter to explore a case study of some components of the code for Mozilla
Firefox, a large-scale software project developed regularly over the past
two decades by hundreds of programmers. Given the sheer amount of
code written during that period, I focus on a handful of rhetorical tactics
and goals present in the browser’s code to see how its authors attempt
to communicate particular kinds of meaning to their collaborators about
how the code operates (or how it is meant to operate).

In chapter 5, I turn from analysis of existing practices to composition
of a set of example programs or “practice scripts” to emphasize their use
as starting points for further experimentation with code. Specifically, I
connect the historical rhetorical exercises of progymnasmata with small-
scale programming tasks as one potential and initial means of realizing
an approach to software development that is explicitly informed by rheto-
ric. These exercises may help readers unfamiliar with programming begin
to recognize and experiment with employing particular rhetorical con-
cepts for specific procedural ends.

Finally, in chapter 6, I consider how rhetorical code studies might be
further developed in several significant scholarly directions, including—
for educational initiatives—how rhetorically informed efforts to program
might be assessed by instructors, just as other forms of assessment have
been developed for composition in multiple and diverse modes.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Introduction  •  7

Master Pages

Ultimately, I hope that the close relationship I identify in this text be-
tween rhetoric and code will be taken up and explored further by other
scholars, whether in rhetoric or in other fields. Perhaps a rhetorical study,
and practice, of code can lead to more software development engaged with
the ideologies and values of programmers and users and that works to ef-
fect cultural and political change more fully, actively, and explicitly to the
benefit of those same populations. For a world fundamentally impacted
by digital technology—and thus by its software—the arguments we and
others make in code have the potential to be read, experienced, and re-
sponded to so that we can develop not only more responsible and ethical
programs (to use a term coined by Brown 2015) but more responsible and
ethical publics as well.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

9

chapter 1

Toward the Rhetorical Study of Code

In April 2014, it was revealed that a security bug in OpenSSL, a software
library for ensuring secure communication in and across computer net-
works, had existed for the previous two years. The bug operated by open-
ing an exploit into the “heartbeat request message,” a means of testing
the security of connections opened with OpenSSL. While these messages
were supposed to send a specific kind of data (a 16-bit integer) for this test
and then have the same message sent back to confirm connection, the bug
allowed for the data contents of a computer’s entire allocated memory
buffer to be sent as part of the message. Dubbed “Heartbleed,” the bug
risked transmission of incredibly sensitive data by accident or by mali-
cious intent, as some attackers could send heartbeat requests specifically
to receive their targets’ memory buffer data. Because OpenSSL is a pop-
ular and widely used library, the security impact of Heartbleed included
such varied systems as Amazon Web Services, Minecraft, Reddit, Sound-
Cloud, Steam, Stripe, Tumblr, and Wikipedia.

The code responsible for the bug initially set up a particular way of
reading, storing, and sending relevant information. This way just so hap-
pened to compromise the central goals of OpenSSL by allowing a request-
ing agent to seek out memory buffer data from unsuspecting or otherwise
vulnerable targets, and these requests could be repeated infinitely (Cassidy
2014). While the exact nature of any collected data could never be precisely
determined before a given request, the likelihood of something valuable be-
ing collected could be all but guaranteed with continued exploitation of
the bug.

The eventual patch for the bug, accepted for distribution not long after
the bug was revealed, was relatively small in scope; an excerpt of the patch
is shown in table 1.1. The code selected performs a relatively simple task:
it ensures that no zero-length heartbeat requests are sent, and then it en-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

10  •  rhetorical code studies

Revised Pages

sures that the length of a given heartbeat (the “payload”) has an appropri-
ately long record; otherwise, the request is discarded (Cassidy 2014). De-
spite the relative simplicity of the code in terms of the overall complexity
and number of lines of code involved, its significance was enormous, with
only 12,000 of the 800,000 most popular websites remaining vulnerable
more than a month after the bug was made public (Leyden 2014).

So, given the potential consequences of Heartbleed and the relatively
small fix it took to resolve the issue, why did it persist for so long? And
what does the story tell us about the rhetorical activity taking place not
only in response to the bug, of which there are many examples to choose
from, but also within the code texts before and after its patch? Further,
to what extent does Heartbleed—or any other specific example, such as
the case of the Mozilla web browser, discussed later in this book—reflect
more broadly applicable understanding in regards to software develop-
ment, use, and the ways programmers approach their code as meaningful
communication?

These questions cannot all be answered easily. My goal, however, is not
to propose easy answers so much as to attend to the tensions, problems,
and complications that arise from circumstances like those of the Heart-
bleed bug. Further, I hope to draw more critical attention to the rhetorical
activity taking place in and through the code at the center of phenomena
like the Heartbleed bug, as that activity can and does exert tremendous in-
fluence over how individuals and communities respond to and deal with
the consequences of writing code—and thus constructing and dissemi-
nating meaning in particular ways for certain audiences. This attention
takes place through the cultivation of a rhetorical orientation toward
software, code, and its algorithmic procedures, which we can recognize
through scholarly literature in several fields: digital rhetoric, software
studies, critical code studies, and technical communication.

Table 1.1. Excerpt from Heartbleed patch (t1_lib.c) by snhenson et al. (2015)

Line Code

3977 /* Read type and payload length first */
3978 if (1 + 2 + 16 > s->s3->rrec.length)
3979 return 0; /* silently discard */
3980 hbtype = *p++;
3981 n2s(p, payload);
3982 if (1 + 2 + payload + 16 > s->s3->rrec.length)
3983 return 0; /* silently discard per RFC 6520 sec. 4 */
3984 pl = p;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  11

Over the past decade, there has been continually increasing interest in
the rhetorical study of software and code, with examinations of software
as possessing and communicating ethics (Brown 2015) to advocacy for
code-related literacy (Vee 2017) to an understanding of video games as a
form of embodied practice (Holmes 2017) to the potential emergence of
genres in code texts (Brock and Mehlenbacher 2017), as well as to experi-
mentation with writing meant for algorithmic readers (Gallagher 2017).
This interest, as well as its broadening scope and deepening focus, sug-
gests the birth of a scholarly field related to but not incorporated entirely
within rhetoric nor within the fields of software studies or critical code
studies. Instead, this field, which I call “rhetorical code studies” (a term
that has already seen some uptake; see Beck 2016), exists at a point of con-
vergence of all three areas of study; its name reflects the position and fo-
cus of inquiry that the field has developed thus far and the possibilities
that future investigations might uncover. Rhetorical code studies provides
a means by which software use and development as well as the communi-
cative work that takes place through its code texts—as well as the algorith-
mic logics communicated through those code texts (Beck 2016)—could be
understood more clearly as rhetorical activity. Further, such inquiry could
open up new directions for pedagogical engagement with code and com-
putation as avenues for communication as well as for critical literacy.

An argument for the rhetorical study of code might seem either as ob-
vious as the rhetorical study of other forms of communication or as pre-
posterous as the rhetorical study of an arhetorical subject, and this reflects
two common threads of conversation among rhetoricians regarding the
scope of the discipline. It is neither compelling nor accurate to argue that
rhetoricians should attend to code simply because such inquiry has not
been performed much or at all. Instead, I base my argument on the prem-
ises that code is as meaningful as any other form of communication and
that the sheer amount of code produced each day (likely numbering in the
billions of lines of code), along with the impact that much of that code
has on myriad aspects of daily life, suggests an important phenomenon in
need of continued and focused investigation.

Rhetorical code studies can potentially address multiple kinds and
modes of rhetorical activity and interaction, including communication
reflecting complex relationships such as among developers, between de-
velopers and users, between developers and technologies, and also users
and technologies. For the purposes of this project, and explained in more
detail in chapters 2 and 3, I emphasize the rhetorical activity of developer-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

12  •  rhetorical code studies

Revised Pages

to-developer communication, as that sort of interaction has significant
impact on subsequently triggered sites of activity, such as in how techno-
logical interfaces communicate particular arguments to their users.

What Does Rhetorical Code Studies Involve?

Rhetorical code studies, as I am arguing for it to be described and under-
stood, combines the study of rhetoric with that of software and code, pos-
sessing a particular focus of inquiry centered on several key characteristics
of code and the discursive contexts surrounding its composition. This de-
scription of rhetorical code studies builds on Beck (2016), who argued for
an understanding of algorithms as being fundamentally persuasive and
advocated for the rhetorical study thereof; code serves as an optimal site
for exploring how algorithmic expression and communication operates
rhetorically, thanks to a complex set of relationships between code, lan-
guage, software, and procedure.

The first characteristic of code important to its rhetorical study is the
set of rhetorical qualities and capacities of code, a term that refers to both
source code and the executable programs built from source code. Source
code is the readable set of operational commands written in any number
of existing computer languages, generally created and stored as text files
with language-specific syntax and vocabulary. Today, most source code is
written in a “high-level” language, meaning that it is immediately more
accessible to humans than to machines: high-level source code must be
compiled (translated) into a lower-level language in order to be executed
by a computer. High-level languages include C, Java, and Ruby; these tend
to possess features that more closely approach those of natural languages
like English. Low-level languages include Assembly and other forms of
machine code, and they specify far less human-readable instructions to
the computer(s) executing their commands. Executable programs, in con-
trast, are those compiled or otherwise machine-interpreted software that
allow a user or machine to perform particular activities, such as brows-
ing the web, writing and saving text documents, calculating mathematical
equations, verifying password correctness, and so on.

The second characteristic to be addressed is the discourse surrounding
the development and use of code, which includes code-level comments
and meta-commentary. Developers regularly communicate with one an-
other inside code texts via statements called comments, which are distin-
guished from code statements in that comments are noninterpretable,

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  13

nonexecuting natural language text blocks intended for human audiences.
Because of their existence within code files and their proximity to partic-
ular lines of code, comments tend to illuminate some intended purpose
for or function of a given block of code. (Of course, sometimes this illu-
mination doesn’t happen, and the result is more confusing than clarify-
ing.) An example of comments distributed amid code statements can be
seen in the Heartbleed patch excerpt demonstrated in table 1. Lines 3977,
3979, and 3983 each have brief phrases directed toward human read-
ers and punctuated in a way as to let the computer know to ignore those
phrases, e.g. from line 3979: “/* silently discard */” (snhenson
et al. 2015). In this comment, the author indicates to interested readers
what the code in that line should successfully perform; if some other be-
havior occurs, then contributors to the program can more easily identify
the likely source of the problem. Comments exist among but outside the
functional scope of the source code lines that make up the interpretable or
compileable software program. In addition to intracode commentary, de-
velopers actively engage each other just as often in more conventional ave-
nues of discourse outside the code, such as via email lists, bulletin boards,
and the like. As will be demonstrated in chapter 3, code files can serve as
fascinating and significant sites of rhetorical action (primarily focused on
practices of software development) “among” code operations as well as
within their logics.

A third characteristic of code is the set of social, cultural, and histori-
cal contexts that facilitate its composition, dissemination, and critique in
general as well as in regards to specific programs or contexts for use of
technologies. While these contexts are connected to the rhetorical quali-
ties of code broadly speaking, it is important to distinguish them here be-
cause these issues are discussed frequently and prominently in a number
of public and academic circles. Some of this work includes examining is-
sues of race and relevant access, or lack of access, to technologies in the
classroom and beyond (Banks 2006). Nakamura (2007) illuminated the
tensions between how people of color are frequently depicted via digital
media and how they represent themselves and develop online communi-
ties. McPherson (2012) and Risam (2015) have discussed the problematic
relationship between digital technologies, their histories, and the racial
makeup of the academic communities that study them, especially in the
conglomeration of fields called the “digital humanities” and how it po-
sitions inquiry in relation to its objects of study. Other scholars have at-
tended to the historical trajectory of computer technologies, the gender-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

14  •  rhetorical code studies

Revised Pages

ing of labor relating to their production and innovation, and the social and
political impacts of that gendering (Abbate 2012; Hicks 2017). Still others,
like Coleman (2013) and Kelty (2008), have examined cultural concerns
and contexts surrounding software use, especially free and open source
software and its various development, user, and hacker communities.

These characteristics of code—its rhetorical qualities, the discourse
surrounding its development, and the social and cultural contexts in
which it is composed and employed—inform the premises on which
rhetorical code studies is built. In addition to providing an avenue for fo-
cused critical inquiry of underexplored objects of study and perspectives
for study regarding technological development and use, rhetorical code
studies would offer new means of engaging in the creative and rhetori-
cally informed production of meaningful code and software. Specifically, I
posit that software that has been composed with as much attention to the
rhetorical dimensions of its code as to its intended and anticipated execu-
tion and output—as opposed to code perceived to be primarily or wholly
instrumental in nature—might well herald valuable innovations for ap-
proaching computer use in general and code composition in particular.

I hope to describe rhetorical code studies and how its object might be
more fully scrutinized precisely because the use and development of soft-
ware and code can help us understand more clearly, across a number of
rhetorical dimensions, how we attempt to communicate meaningfully
with others across digital contexts. For rhetoric in particular, a field in
which scholars seek out knowledge of and proficiency with meaningful
expression relating to a given situation, this help is key. Further, given the
increasingly significant role that software plays in the daily activities of
all manner of individuals and populations, it is imperative that critics of
rhetoric and software alike understand how software and its code exert
influence upon our efforts to communicate with one another so that we—
academics, software developers, and the general public—can make more
effective and aware use of these code-based forms of making meaning.

In the chapters that follow, this potential field of rhetorical code stud-
ies will be developed through a focus on a set of interrelated concepts
emphasizing the rhetorical means and goals of code, concepts that have
had longstanding importance to rhetoric. The first of these is action as
understood through Burke’s (1969) term symbolic action. For Burke, sym-
bolic action refers to any communicative effort the meaning of which
extends beyond the specific set of acts that makes up the transmission
of a particular message. The second concept central to this argument is
meaning making, the efforts by one or more rhetors to induce or influence

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  15

an audience to act in response to a particular message, whether that ac-
tion is physical or not. The third and final major concept is agency, the
quality of both rhetor and audience to engage themselves in a rhetorical
act; Miller (2007) referred to the quality of agency as “the kinetic energy of
rhetorical performance” (147). These concepts will serve as the basis for
a critical analysis of the Mozilla Firefox web browser, whose long-term,
open-source development provides an accessible point for a rhetorical
inquiry into its code. Following that analysis, I offer another means of
rhetorical inquiry into code by working through a series of exercises in-
tended to highlight concepts important to rhetoric and to programming
so that an interested reader—even one not necessarily familiar with soft-
ware development—can practice rhetorical invention through the com-
position of code.

With these ideas in mind, rhetoricians and scholars of code alike could
move forward along a number of trajectories that would provide insight
into the meaningful, rhetorical, and critical values of computational ob-
jects of study. To better understand how we might move forward in these
ways, however, it is first necessary to gain a sense of how these fields have
set the stage for rhetorical code studies to blossom and for these trajecto-
ries to become available for us to pursue.

Digital Rhetoric

While rhetoric as a discipline is not inherently focused on digital media,
it has nonetheless incorporated digital forms of meaning making into its
fold, with scholars revising and inventing theories of rhetoric as necessary
to more fully understand how those forms operate rhetorically. Below, I
outline the relationship between digital rhetoric, its subfield of computers
and writing, and the emergence of procedural rhetoric as a lens through
which to understand how code, through algorithmic procedure, con-
structs and communicates meaning.

Rhetoric—and most notably rhetoric and composition—has expressly
held an interest in digital technologies for communicative ends at least
since the birth of the Computers and Writing conference in 1982, when
a number of scholars and consultants gathered to discuss “the place of
computing in the writing curriculum” (Gerrard 1995, 280). While the
primary focus for the conference’s first several meetings was on the fa-
cilitation of student writing with computer technologies and the analysis
of that writing, discussions over the next several meetings of the confer-
ence quickly expanded to include the social and political impacts of those

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

16  •  rhetorical code studies

Revised Pages

technologies and the development of theories relating to computer-based
writing activities in and out of the classroom.

During this time, Lanham (1993) coined the term “digital rhetoric” to
describe a number of possibilities for critical and practical engagement via
computer-based communication. For Lanham and many scholars since,
the “bi-stable oscillation” between looking at and through texts—that is,
paying attention to and looking beyond the qualities of a given medium
(Lanham 1993, 5)—remains a central component of the act of reading and
composing digital texts through continually emerging means.

In the twenty-five years since the birth of “digital rhetoric,” rhetori-
cians have explored myriad dimensions of emerging technologies for ex-
pression, persuasion, and other forms of meaning making, as well as how
writer, technology, community, and society interrelate in complex ways,
ways that extend from existing media and modes of communication and
that are unique to digital media. Because of the potential ambiguity of
the term “digital rhetoric,” some scholars have attempted to define more
clearly its ever-widening scope. In particular, Losh (2009) outlined four
distinct, although related, definitions that reflected major threads of rel-
evant critical investigation:

	1.	 The conventions of new digital genres that are used for every dis-
course, as well as for special occasions, in average people’s lives.

	2.	 Public rhetoric, in the form of political messages from government
institutions, which is represented or recorded through digital tech-
nology and disseminated via electronic distributed networks.

	3.	 The emerging scholarly discipline concerned with the rhetorical in-
terpretation of computer-generated media as objects of study.

	4.	 Mathematical theories of communication from the field of informa-
tion science, many of which attempt to quantify the amount of un-
certainty in a given linguistic exchange or the likely paths through
which messages travel. (47–48)

Losh’s definitions clearly include not only humanistic inquiry but the
broader employment of rhetoric as constructing meaning for diverse pur-
poses. Her fourth definition is perhaps most significant for this project, as
the valuable and relevant work occurring in information science identified
by Losh informs much of the philosophy behind rhetorical code studies.

Eyman (2015) has offered a similar broadened set of definitions of
“digital rhetoric” (although focused primarily on scholarly contexts),

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  17

spanning from classical rhetoric to digital media studies to computers
and writing. Eyman argued, through his synthesis of the numerous articu-
lations of the term he provided, that rhetoric had much to offer and gain
from the diversity of approaches being undertaken throughout academe,
only some of which explicitly employ the term “digital rhetoric.” While
much of the work in these approaches has focused on several specific
spheres of communication (namely civic, academic, and professional),
there has been a growing amount of scholarship expanding more broadly
and deeply our understanding of how digital technology facilitates rhe-
torical activity across nearly all aspects of our lives.

Among the most significant arguments about this facilitation is pro-
vided by Selfe and Selfe (1994), who observed that interfaces in electronic
environments communicated particular social, cultural, and political val-
ues that reflected developers’ assumptions. Through an examination of
these assumptions, it became possible to identify anticipated user popu-
lations of those interfaces and what sorts of knowledge, technical profi-
ciency, or other forms of awareness the users were expected to possess
for the interfaces’ use (Selfe and Selfe 1994). Grabill (2003) articulated
the difficulty many rhetoricians had in regards to undertaking the work of
identifying rhetorical activity in and through interfaces, pointing out the
distinction between interface and conventional writing or speaking as a
site of rhetorical communication:

[I]nterfaces are difficult to talk about. They seem natural and inevita-
ble to most people. They are often transparent. Students in my classes
can’t imagine computers being any other way—and most of the time,
neither can I. Interfaces are what programmers write. (465–66)

In essence, rhetoricians have historically struggled with overtly techno-
logical concerns simply because those concerns are frequently perceived
to be outside the bounds of their disciplinary study. For Grabill (and, implic-
itly, for many others), interface construction, and programming in gen-
eral, are clearly forms of “writing” and thus a form of constructing and
expressing meaning.

Writing (With) Digital Media

Rhetoricians have pursued several equally important tracks of inquiry re-
garding digital media and how it relates to existing paradigms of rhetori-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

18  •  rhetorical code studies

Revised Pages

cal theory. One group of rhetorical critics has explored how historical ap-
proaches to rhetoric could effectively provide insight to communication
taking place through electronic and digital media. Miller (2007) examined
the concepts of ethopoeia and rhetorical agency in relation to automation
and similar complex technological engagements, using the example of
an automated software program for writing assessment. Warnick (2007)
argued that rhetoric as a discipline must move away from notions of sin-
gle authors and works as the bases for its study and instead turn toward
the distinct concepts of collaborative authorships and interlinked hyper-
texts (122). Brooke (2009) restructured the rhetorical canons in order
to more clearly and directly define them in relation to the variety of new
media emerging as part of developments in digital technology. Carnegie
(2009) examined how technological interfaces might be better understood
as contemporary forms of exordium; Tarsa (2015) expanded on this argu-
ment to explore how students make sense of digital interface through that
lens, especially in regards to interfaces that promote participation and
interactivity.

A second group of rhetorical scholars has worked to expand critical
orientation and language so as to more fully explain and contextualize dis-
cursive practices mediated by digital technologies. For example, Fagerjord
(2003) argued that rhetoric as a term needed to be redefined to incorporate
more diverse kinds and dimensions of emerging media. Zappen (2005)
posited that it is necessary to consider how the qualities of digital commu-
nication can and do affect specific types of inquiry and discourse, and spe-
cifically “the characteristics and [. . .] strategies of self-expression, par-
ticipation, and collaboration that we now associate with [digital] spaces”
(323). Porter (2009) examined delivery as a means of revising existing rhe-
torical theory or producing new theoretical perspective: “[t]he real value
in developing a robust rhetorical theory for digital delivery lies in [produc-
tive action]” (221). Losh (2016) argued for the need to attend to rhetorical
situation, exigence, orientation, and navigation in regards to “new forms
of rhetorical performance by computational components [that] may be
going on independent of human-centered display” and not merely those
technological engagements easily accessible or recognizable to us (n.p.).
Meanwhile, Stolley (2014) drew an explicit connection between conven-
tional and digital approaches to meaning making in order to advocate for
a transformation of rhetorical thought, arguing outright that “program-
ming is writing. I mean that literally” (264).

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  19

From Digital to Procedural

Scholars interested in computers and writing have made their focus the in-
tersection of rhetorical invention and digital technologies, experimenting
with the range of relevant possibilities available to scholars and students
alike. Yancey (2004) observed that most students of writing are likely to
engage regularly in types and modes of digital communication that are not
addressed, either adequately or at all, by scholars and instructors of writ-
ing and rhetoric. Rieder (2010) has suggested that there might be merit in
examining particular types of code processes as rhetorical strategies for
new forms of writing. McCorkle (2012) argued that rhetorical delivery op-
erates as a form of technologically mediated discourse involving not just
invention within a particular technology but also the body of systems that
facilitate a text’s distribution. Shepherd (2016) examined how protoco-
logical systems—in particular, online matching technologies—influence
particular habits and behaviors. A small group of other scholars (Cum-
mings 2006; Carpenter 2009) have observed that there is rhetorical value
to be found in code as a form of writing, although there is little agreement
on how best to engage it; some suggest it should complement conven-
tional forms of writing (like a kind of frame to facilitate novel means of in-
teraction with that conventional writing), while others question whether it
might be a distinct method of communication worthy of examination and
experimentation separate from other writing studies. Brooke (2009) out-
lined a new trivium of study for contemporary education that incorporates
an “ecology of code” and its productive resources as one of the trivium’s
components (48).

More recently, special issues of two journals—enculturation, edited by
Hodgson and Barnett (2016), and Computational Culture, edited by Brown
and Vee (2016)—focused on new directions and perspectives considered
by rhetoricians in regard to meaningful communication in and through
technology, computation, and procedure. Among the authors in the spe-
cial issue of enculturation, Holmes (2016) explored how technologies work
persuasively to effect behavioral change in users, connecting behavioral
habits (hexeis) with ethos to describe how particular digital practices occur.
Beck (2016), explicitly responding in part to an earlier call for the rhetori-
cal study of code, argued for a need by rhetoricians to attend more fully and
closely to computer algorithms as rhetorical agents, outlining how they
can be understood to function persuasively. Rieder (2016) demonstrated
the possibilities for hybrid digital-physical “eversions” that made socio-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

20  •  rhetorical code studies

Revised Pages

political interventions via rhetorical engagements with and uses of digital
data, such as the depth data generated by a Microsoft Kinect sensor. Jusz-
kiewicz and Warfel (2016) examined the rhetorical nature of mathemat-
ics, especially in how mathematics programming affords and constrains
particular kinds of meaning making. Some of the authors included in the
special issue of Computational Culture include Brock (2016), who drew at-
tention to the relationship between rhetorical style and the composition
of code; similarly, Bellinger (2016) complicated the ways in which digital
media scholars have identified error, failure, and disruption in contrast to
successful or “proper” function. Birkbak and Carlsen (2016) offered Face-
book’s EdgeRank algorithm as a demonstration of procedural rhetoric in
that the algorithm itself becomes “a rhetor that actively constructs a rhe-
torical commonplace that can be drawn upon in order to justify” its own
procedural expression (n.p.). Maher (2016) focused on phronesis in regards
to how “artificial rhetorical agents” are being developed to consider com-
plex and nuanced ethical situations.

Perhaps the most influential scholar for the combined study of rheto-
ric and code is Bogost (2007), whose concept of procedural rhetoric has ar-
ticulated a means of inducing action as demonstrated through particular
media in order to teach audiences how to use those media; this concept has
been expanded on and connected more fully to traditions of rhetoric by
Ingraham (2014) and Beck (2016), among others. Procedural rhetoric, ac-
cording to Bogost, is “the practice of using processes persuasively” (28).
This definition is most commonly considered in regards to the expressive
outcomes of processes (e.g., software interfaces), but procedural con-
struction is a form of meaning making as well: it sets up how algorithmic
processes can be, and are, employed rhetorically. Bogost noted that, for
procedure, “arguments are made not through the construction of words
or images, but through the authorship of rules of behavior, the construc-
tion of dynamic models. In computation, those rules are authored in code,
through the practice of programming” (29). By focusing on the potential-
ity of dynamic computation—when an audience attempts to explore the
procedures composed (i.e., programmed) by a rhetor for a digitally medi-
ated situation—the means for, and types of, action to be induced are dras-
tically altered by user and computer system alike.

Rhetoricians are clearly interested and involved in work relating to how
meaningful communication occurs in digital contexts, from extensions of
traditional or conventional forums and channels to emerging genres and
situations, including a strong focus on algorithmic procedures as underly-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  21

ing logics for digital media. Rhetorical code studies can build on this work
by providing continued and heightened attention to how the technologies
underlying those contexts enable, augment, and constrain the construc-
tion of meaning with and through digital technologies.

Critical Code Studies

A related body of scholarly inquiry connecting software and rhetoric
emerges primarily from the study of literature, in which critical method-
ologies are applied to code as if it possessed familiar textual qualities and
functioned similarly to literary texts. Scholars interested in critical code
studies explore how particular code languages facilitate certain habits of
mind as well as means of communication via the construction of soft-
ware programs. This line of inquiry sprung from early engagements with
software studies and new media scholarship as part of a directed effort to
explore computer code as something “more” (i.e., more meaningful and
significant) than its output (Cayley 2002; Marino 2006).

Many critics of code approach the field with a literary orientation, view-
ing code texts as insightful regarding questions of authorial intent, con-
temporary trends in writing (programming) style and genre, and mean-
ing as expressed within a particular body of code (Marino 2006). Ramsay
(2011) made use of code for such ends, performing an “algorithmic criti-
cism” that enabled him to transform or “deform” texts into code-mediated
expressions (referred to as “paratexts”) so as to highlight new avenues for
textual interpretation. For Ramsay, algorithmic code serves as an innova-
tive means for scholarly engagement because of its ability to make famil-
iar texts strange so as to help critics generate new questions and avenues
for critical research. Douglass (2011) has approached code more tradition-
ally as a textual object for inquiry, questioning how code is currently read as
distinct from and counter to how code should be read. That is, rather than
suggest “best practices” for code-related interpretation, Douglass has em-
phasized how various groups tend to evaluate and value code as a familiar
or unfamiliar form of meaningful communication; subsequently, Douglass
has suggested, we need to ask what these existing practices might mean
for our ability to work with code in new and potentially significant ways.

Critical code studies has prompted a trajectory into the potential for
discovering what meaningful code texts can signify through their con-
tent, as well as through the processes they describe, for a variety of au-
diences. Burgess (2010) examined how the PHP script language changes

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

22  •  rhetorical code studies

Revised Pages

the act of reading web pages and markup language, since PHP is inter-
preted by a web server and transformed into HTML before a user has the
chance to see what it does when the user looks at a particular web page.
Jerz (2007) explored both the source code for the late 1970s text-based
video game “Adventure” and the physical location (Kentucky’s Mammoth
Cave) that inspired its creation in order to understand how specific lines
of code in its files communicated significant meaning to the game player
about how to explore certain possibilities for game play. Sullivan (2013)
developed a conference presentation webtext whose full content would
only reveal itself when a reader examined its source code, where the bulk
of Sullivan’s argument existed as comments hidden from web browser
rendering. Schlesinger (2013) explored the possibility of a “feminist pro-
gramming language,” one that might not be based on Boolean logic, in
a HASTAC blog post that garnered considerable discussion regarding its
potential impact on programming philosophy (namely, about the extent
to which existing technological constraints would allow such a language
to function). Schlesinger’s work is also noteworthy for the nearly immedi-
ate backlash it received from some programmer circles whose members
deemed its theoretical language “academic gibberish” and who offered
thinly veiled and overt misogynistic criticisms at Schlesinger and other
discussion participants (cf. topwiz 2013; Reif 2013).

Another group of scholars straddles the boundary between software
and critical code studies, emphasizing through their work how code and
software are often as radically different objects of study as they are similar
to one another. Chun (2011) has led this particular charge, pointing out
that executing code—the compiled software that one runs in order to use
specific programs on a computer—is distinct from its comparatively static
source code that, while readable, does not act. For Chun, source code
is an artifact that only hints at the possibility of what a program can do
since the act of using the software cannot be replicated by reading its code.
In contrast, Hayles (2005) argued for a distinction between natural lan-
guage and executable code language that emphasized the ability of natural
language communication to signify more than it literally suggests, subor-
dinating code to mere description of the computational operations that
its compiled program would execute, although it must be noted that the
majority of code critics ultimately disagreed with this distinction (Cayley
2002; Cramer 2005; Marino 2006). For scholars like Chun and Hayles, the
critical study of code offers an important avenue for engaging with digi-
tal technologies as means of creative invention that, nonetheless, reflect

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  23

systems of constraint and control upon the ranges of potential outcomes
(texts, performances, and other acts) that could be expressed through spe-
cific code texts.

A third group combines the study of code and algorithmic procedure
with that of literacy; its scholars have called attention to the growing public
conversation surrounding “computational literacy” and “coding literacy”
(Vee 2017), “procedural literacy” (Mateas 2005), and even “iteracy” (Berry
2011) as concepts and means of promoting STEM-related education and
vocational training. These calls resemble earlier arguments in technical
communication (e.g. Miller 1979) for technical documents to be viewed as
rhetorical rather than merely instrumental and that writing students culti-
vate critical and rhetorical literacies regarding technologies in addition to
becoming technically proficient in using them (Selber 2004). Examinations
of these more recent calls for and approaches to promoting various forms
of computational literacy demonstrate that the rhetorical dimensions of
code and coding are frequently left implicit in these literacy-focused set-
tings even while a number of creative problem skills are promoted through
programming activities (Vee 2017, 16). The result of this apparent imbal-
ance in critical awareness is a proliferation of lay arguments that advocate
improving critical thinking (as provided within the bounds of STEM initia-
tives) but that also discount or overlook the contributions that humanities
fields could make to help promote the very sort of critical thinking desired
by educators and employers. A focused effort to tie together explicitly the
goals of the computational literacy movement with the skills and knowl-
edge of critical analysis and practice in the humanities—that is, an effort
very much in the wheelhouse of rhetorical code studies and which is al-
ready being championed by Vee, Berry, and others—could lead to a much
stronger and effective set of literacy initiatives.

Software Studies

The field of software studies, while closely related to the critical study
and analysis of code, is focused primarily on the social and cultural sig-
nificances of and influences upon the processes of software programs and
the logic that facilitates their use, concerns of clear relevance to rhetorical
code studies. There are several major initiatives currently being developed
by software scholars beyond the set of varied approaches to the study of
software by critics who affiliate themselves, or who are otherwise associ-
ated, with the field.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

24  •  rhetorical code studies

Revised Pages

On a large scale, software as an object of inquiry involves global net-
works like Google’s search mechanisms and cloud-based information
storage or cell phone network infrastructures; on a smaller but no less
significant scale, software studies is concerned with computer functional-
ity like that of the loop, in which elements of a data set are iteratively ma-
nipulated by a set of operations for a particular set of purposes. Manovich
(2008) defined the goal of software studies as “investigat[ing] both the
role of software in forming contemporary culture, and cultural, social,
and economic forces that are shaping development of software itself ” (5).
A number of disciplines are represented in software studies, reflecting the
broad range of its subject’s impact, from art (Crandall 2008) and design
(Lunenfeld 2008; Sack 2008) to science and technology studies (Bowker
2008) and literary studies (Douglass 2008).

Platform studies deserves a brief note as a field closely related to soft-
ware studies due to its focus on the ecologies of software and hardware
technologies that serve as the basis for software activity. For example,
where a software scholar might be interested in the cultural values enabled
by a particular programming language, a platform scholar would focus on
how a given hardware system (like a desktop computer with a 32-bit pro-
cessor running the Windows XP operating system) constrains the sort of
software texts, or set of processes, that could be created or disseminated
through that hardware system. Unlike software studies’ emergence from
a general call for the study of digital media, platform studies was formed
as a means for video game scholars to draw attention to the technologies
that enabled the play of specific games (see Bogost 2008; Montfort and
Bogost 2009), although the field’s focus has since expanded to include
studies like that of Salter and Murray (2014), who explored Adobe Flash
and its impact on web design. The field of platform studies demonstrates
the potential for rhetorical code studies in its goal of critical investigation
into the relationship between code, design, user experience, and techno-
logical infrastructure.

Most scholars who associate their goals with those of software studies
do so in a relatively unrestricted fashion, noting interest in some particular
political, social, or other cultural study of software at one or more levels of
technology, such as the graphical user interface, high-level programming
languages, or even the low-level assembly languages that translate read-
able code into executable operations to be run by a machine. For example,
Parikka (2008) examined the ability to copy through digital software as
both a new means of high-fidelity reproduction (as a command and as a

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  25

tool embedded in various software programs) and as cultural technique
that follows a tradition of quotation and recycling for the purposes of dis-
seminating information. Many of the restrictions that are imposed upon
software scholarship are built upon the qualities of new media outlined by
Manovich (2001), which he argued were requisite for any scholarly under-
standing of how digital technologies worked:

	1.	 new media objects are composed of digital code, which is the nu-
merical (binary) representation of data;

	2.	 the structural elements of new media objects are fundamentally
modular;

	3.	 automation is prevalent enough in new media systems that human
presence or intervention is unnecessary;

	4.	 new media are infinitely variable;
	5.	 new media, as computer data, can be transcoded into a potentially

infinite variety of formats. (Manovich 2001, 27–45)

While not all software critics are interested in the technical qualities of
digital media included in Manovich’s list, these concerns nevertheless
have informed much relevant scholarship, such as Cramer’s (2005) analy-
sis of algorithm as “magic,” in which he broke down the ways various cul-
tures have attempted to comprehend computation.

Several scholars have attended to the relationships between software,
code, and infrastructure. Hayles’ (2004, 2005) comparison of natural and
code languages for meaningful purposes suggested that code, despite its
mutable, transcodable nature—one that suggests a flexible or shifting po-
tential meaning attached to it—does not possess the ability to signify or
transmit multiple meanings in the liquid manner that natural language
can and does. Fuller and Matos (2011), meanwhile, have extrapolated the
possibilities of “feral” computing systems and the potential for wild, il-
logical designs that already emerge from the inherently logical nature of
new media as data and code languages. Helmond (2013) examined the
“algorithmization” of hyperlink construction and dissemination over time
as expectations changed for web and social media navigation, sharing,
and tracking activities. Noble (2018) has called attention to the ways that
search engines like Google reinforce sexist and racist cultural values (es-
pecially those harmful to black women) through their algorithmic media-
tion and presentation of search results to users. Johnson and Neal (2017)
highlighted the growth of black code studies, a related field whose schol-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

26  •  rhetorical code studies

Revised Pages

ars explored the radical innovations by people of color to digital technolo-
gies and resistances to industrially and politically normative uses thereof.

The general field of software studies includes within its fold a varied set
of critiques, including Fuller’s (2003) analysis of the infamous “Clippy”
utility in Microsoft Word; Kittler’s (2008) more general analysis of code as
meaningful subsystems of language; and Kitchin and Dodge’s (2011) ex-
ploration of the multiple levels of activity of daily life into which software
are incorporated, as objects, processes, infrastructures, and assemblages
(5). For many software scholars, there are several major components of a
software program that indicate the systems of control and knowledge that
its developers assume of, and impose upon, user bases, including the user
interface, the language(s) in which the developers wrote the program, the
systems in/on which the program runs, and even the potential uses for
the software anticipated by the developers. By demonstrating the range
of possible texts that could, and do, provide significant insight into how
software and culture exert their reflexive influences upon one another,
these software scholars have implicitly nudged the field as a whole toward
the conventional domain of rhetoric. Some critics even put into practice
the creative development of software that might more clearly illustrate its
relationship with culture, such as the “QueerOS” project by Barnett et al.
(2016), a speculative operating system for discovering and exploring “new
pleasures and possibilities both online and off ” (n.p.). This was proposed
in response to a perceived “lack of queer, trans, and racial analysis in the
digital humanities, as well as the challenges of imbricating queer/trans/
racialized lives and building digital/technical architectures that do not
replicate existing systems of oppression” (n.p.).

Other scholars of software focus primarily on the types of processes
the logic of which fuels the use of software programs, such as the calcu-
lations that provide Google search results or the behaviors of computer-
controlled video game characters, what Wardrip-Fruin (2009) has referred
to as “expressive processing.” Because of its focus on how relevant tech-
nologies enable and constrain software and user behavior, this field has
much in common with the related field of platform studies. Scholars in-
volved in this subfield of software studies approach software as a way of
“reading what processes express” and how processes “operate both on
and in terms of humanly meaningful elements and structures” (Wardrip-
Fruin 2009, 156). While many software scholars explore the processes and
narrative experiences of video games and works of digital fiction, Bogost
and Montfort (2009) explicitly specified that the field is not constrained

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  27

to games as objects of inquiry, noting that even programming languages
possess underlying logic systems to be expressed through their use.

While there are some divergences between scholars in regards to the
specific focal points of the field, there is one common line of agreement.
While technical knowledge of computer systems has rarely been argued
as necessary to perform successful inquiries into software processes, most
scholars involved in expressive processing suggest that such a skill set is
crucial to pursuing more fully questions of the subfield. Wardrip-Fruin
(2009) has described the problem as follows: “Trying to interpret a work
of digital media by looking only at the output is like interpreting a model
solar system by looking only at the planets” (158). That is, a solar system
has at its center a star rather than a planet, and it is the star that enables
the entire set of planets to revolve around it and maintain their various
ecological systems. For computers, programs (the planets in Wardrip-
Fruin’s analogy) require the framework provided by hardware and soft-
ware alike in order for individuals to enjoy the interfaces they most often
use. Schmidt (2016) has offered a similar call to action for digital humani-
ties scholars more broadly: “the first job of digital humanists should be
to understand the goals and agendas of the transformations and systems
that algorithms serve so that we can be creative users of new ideas, rather
than users of tools the purposes of which we decline to know” (n.p.).
Scholars studying software contribute to rhetorical code studies through
their emphasis on the technological components integral to the human-
istic analysis of digital media as well as how those components facilitate
meaningful action for further invention and exploration.

Technical Communication

While technical communication was not identified as a foundation for
rhetorical code studies, it nonetheless has had a long and rich relation-
ship with rhetoric and software development that is worthy of mention,
thanks to its focus on (among others) clear and effective communication
that facilitates complex activities. While the majority of relevant technical
communication scholarship has focused less on the explicit composition
of code than on the composition and design of supporting communica-
tion practices and documents (e.g., installation guides, new user tutori-
als, etc.), it nonetheless contributes to rhetorical code studies through
its emphasis on expert authors’ need to answer less informed audiences’
questions and address potential confusions with a given text or related

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

28  •  rhetorical code studies

Revised Pages

activity. Further, given technical communication’s close relationship to
technology-oriented industries, scholarly projects in technical communi-
cation often offer unique insight into the development and dissemination
of relevant texts, thanks to technical communication scholars’ direct col-
laboration with industry professionals.

In particular, the work of Spinuzzi has been perhaps the most directly
related scholarship in technical communication to rhetorical code stud-
ies. Spinuzzi (2002a) has explored a number of questions centering on
how activity theory and rhetorical genre studies can illuminate, inform,
and mediate professional programming practices. Spinuzzi (2003) exam-
ined software development as a kind of activity system and genre ecology, two
means of understanding complex, interrelated acts of communication
made up of numerous genres, the individual actors and communities who
engage them, and the domains of knowledge necessary to do so. Most sig-
nificantly, Spinuzzi (2002b) examined software code languages through
the lens of paralogic rhetoric, viewing code as “a collaborative tool meant
to help programmers share and review their work with others” rather than
as a purely instrumental, machine-oriented set of commands (n.p.).

Similarly, scholars like Hart-Davidson et al. (2008) and Johnson
(2014) have investigated the relationship between rhetoric and proto-
col (e.g., workflows), represented in systems like those of information
or institutional infrastructure, in order to understand how technical
communicators—among others—might effect change in regards to such
systems. Warnock and Kahn (2007) considered the ways that informal and
self-directed exploratory writing practices might impact programming
practices as a means of more clearly tying together programmers’ ap-
proaches to writing and thinking. Maher (2011) highlighted the relation-
ship between software documentation-related literacies and the “evange-
lism” through which particular software ideologies (e.g., open source)
develop and are expressed.

Others have continued to explore questions of genre and activity in
relation to practices of software development and related knowledge
work. For example, Applen (2001) examined knowledge management
and XML authorship to communicate meaningful information in particu-
lar ways through metadata, as well as the data it describes, for particular
audiences. Truscello (2005) called attention to the liminality of software
through what he called the “rhetorical ecology of the technical effect[, which]
marks the convergence of everyday life, the materiality of technology, and
the web of cultural practices that constitute software” (349). Dyehouse

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  29

(2007) investigated the role of knowledge content analysis in regards to
technological development, specifically how arguments were composed
and delivered to nonexpert or nonspecialist audiences as well as how
technical communicators could more effectively study such composition
and delivery. More recently, Divine, Ferro, and Zachry (2011) studied a set
of Web 2.0 services in order to learn about how communicative genres
were developed and employed for a variety of knowledge work contexts.
Swarts (2011) examined how technological literacy functions as a process
through which social networks are constructed, developing a heuristic in
order for “the kinds of rhetorical articulations that technical communica-
tors create” to be better understood (297). Further, Swarts (2015) consid-
ered the procedures and processes involved in seeking and evaluating help
online in regards to navigating issues of uncertainty and contingency that
may affect how a problem is or could be solved.

The close relationship between technical communication and the soft-
ware industry, as well as that of technical communication and rhetoric,
provides rhetorical code studies with a rich body of scholarship and prac-
tice on which to draw, for inquiry not only into professional practices but
also for comparative study with amateur practices. Given that technical
communication scholars are increasingly focusing on software develop-
ment in complement to end-user experiences or genres, it is likely that the
field of technical communication will provide some of the most valuable
conversations and investigations for those interested in exploring more
fully the questions central to the rhetorical study of code.

Rhetorical Code Studies’ Gains and Contributions

The field of rhetorical code studies exists within the territory I have be-
gun to locate over the course of this chapter. It can be recognized more
clearly by outlining the foci of these related and aforementioned disci-
plines. Where rhetorical code studies would be most valuable to rhetoric,
software studies, and critical code studies alike is in its emphasis on the
rhetorical qualities and goals of computation, the underlying logic of digi-
tal technologies, at multiple levels of activity. These levels of rhetorical ac-
tivity involve communication geared toward technological execution (the
computation itself) and what sorts of expression that execution results in.
But arguably the most important site of activity is how computational op-
erations are composed: the persuasive arguments suggested through pro-
cedures by developers in order to convince others that such procedures are

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

30  •  rhetorical code studies

Revised Pages

not only useful but optimal in order to anticipate particular computational
and expressive activities.

While meaningful communication has been addressed to some degree
by software and critical code studies, and while the mechanisms and log-
ics of digital technologies have been incorporated superficially by rheto-
ricians, there has not yet been a satisfactory attempt to explore the spe-
cific relationship between technological activity and development-related
construction of meaning at and around levels of software code. Rhetorical
code studies would serve as the site of such critical efforts, and scholars
from across these related disciplines could find a focus for their work in
the points of intersection that connect inquiry into meaning making, per-
suasion, software processes, and code as text.

Rhetoric, and digital rhetoric in particular, offers rhetorical code stud-
ies an established grounding in the study of meaning making and, with it,
suasive action. While software and critical code studies bring to rhetorical
code studies a focused inquiry into software, code, and the logic thereof,
digital rhetoric introduces into the mix a set of critical lenses and tools for
investigating how individuals communicate with and through digital me-
dia. Special attention should be paid to rhetoric’s tradition of focusing on
the means by which rhetorical agents attempt to induce specific audiences
to various kinds of action. This is a crucial quality for rhetorical code stud-
ies, as it clarifies both a set of goals that developers, software users, or
even technological systems work toward and the types of meaning mak-
ing they engage in in order to achieve those goals. In turn, rhetorical code
studies provides rhetoric with a more focused and robust understanding
of how code, software, and technological infrastructures serve to make
meaning, directly and indirectly, in a wide variety of contexts.

Critical code studies is valuable to rhetorical code studies through its
focus on exploring the meaningful qualities of software code as meaning-
ful text. Just as software logic can help one understand how code-based
persuasion and action could occur, an examination of specific code texts
and languages allow for greater insight into the specific forms and means
of invention and rhetorical action that are currently attempted, and that
could be attempted, by programmers for specific audiences. Critical en-
gagement with code serves as a way to explore not just what might be
created but as a way to reflect on, and to move beyond, the traditions of
existing historical and contemporary code practices. For rhetorical code
studies, this is significant, as it aids scholars in recognizing and address-
ing efforts toward constructing and communicating meaning through var-
ious types of code texts. Rhetorical code studies offers critical code studies

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Toward the Rhetorical Study of Code  •  31

a demonstration of its methodological strengths and flexibility, incorpo-
rating into critical code studies’ fold the vocabulary and theoretical frame
of rhetorical criticism to complement its existing literary foundation.

Software scholars provide rhetorical code studies with a set of criti-
cal lenses through which to scrutinize the relationships between culture,
society, and software as a guided path toward the rhetorical scrutiny of
software. Of special interest are the cultural influences and constraints
upon computational logic, as expressed in particular software paradigms
and programs, that are emphasized by recent work in software studies.
Software scholars bring to rhetorical code studies an emphasis upon the
malleable, computable, and inherently meaningful nature of digital data.
Platform studies scholars call attention to the specific circumstances of a
given computer technology and the software it runs, situating both within
a particular cultural and historical context that can help us understand
the decisions made to develop both, along with the implications those
decisions may have had on the construction of subsequent technologies.
Software critics have helped establish a space for rhetorical code studies
by drawing attention to the performative and meaningful qualities of soft-
ware designed for specific ends. As with critical code studies, a rhetori-
cal approach to code provides software studies with another means of and
language for articulating many of the relationships between code, soft-
ware, procedural expression, platform, and user, along with a rich body
of scholarship that has examined similar complex relationships and com-
munication systems.

Rhetorical code studies has emerged from points of convergence
among these fields, and it owes much to each for its theory and critical
practice. At the same time, scholars examining code rhetorically have be-
gun and continue to demonstrate the incredible potential that this area of
study can offer back to those same fields and to others with overlapping
objects of study. Building on the foundation that rhetorical code studies
has established, the next chapter examines the longstanding relationship
between algorithmic procedure and humanistic expression in order to il-
luminate even more fully how algorithms have been wielded rhetorically
through history and how that historical use informs contemporary soft-
ware development practices.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

33

chapter 2

Rhetoric and the Algorithm

The algorithm is perhaps the concept most central to rhetorical code stud-
ies, and it is necessary to examine how algorithmic procedures are related
to humanistic scholarship in general and to rhetoric in particular. This re-
lationship can be demonstrated by tracing a path from the origins of the
algorithm through its adoption from mathematics by computer science
and engineering to its role in the critical work of humanities research. Fol-
lowing this brief history of the algorithm and its connection to humanis-
tic work is an interrogation of how the algorithm plays an integral role in
rhetorical activity. Such activity can be understood from a perspective that
Hayles (2012) has referred to as “technogenetic,” meaning that it identi-
fies the interrelated codevelopment (or, for Hayles, coevolution) of hu-
man and technological entities (10). For rhetoricians, this means not only
digital or electronic technologies but all apparatuses, broadly employed,
for the purpose of making and communicating meaning as well as the
“specific implications” Gillespie (2014) has identified “when we use algo-
rithms to select what is most relevant from a corpus of data composed of
traces of our activities, preferences, and expressions” (168). Algorithmic
construction of meaning, the execution of a kind of “knowledge logic”
(Gillespie 2014, 168), works to facilitate action in a variety of digital con-
texts, emerging from their predecessors in new and familiar ways.

From Algorithm to Algorithmic Culture

An algorithm is, in broad terms, a procedural framework for accomplish-
ing a particular task. Understood simply, it is the description of a task-
oriented procedure through its component operations (i.e., its steps). The
algorithm’s most common explicit disciplinary usage occurs in engineer-
ing, computer science, and mathematics, where the algorithm exists as

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

34  •  rhetorical code studies

Revised Pages

a procedure with a discrete number of tasks whose operations make use
of clearly defined conditions that impact subsequent decisions within the
procedure. For example, the algorithm for a web page to display a certain
time of day is likely to rely on determining where, geographically, the IP
address for a given user’s computer exists: if it is on the Atlantic coast of
the United States, the time’s display may accordingly adjust to UTC-5, or
five hours behind Greenwich Mean Time. An algorithm for washing one’s
clothes may involve a condition wherein the washer is cleaning a load of
white or colored garments; if the former, the algorithm may involve a step
regarding the inclusion of bleach into the mix whereas washing colors
would not involve that step.

The algorithm as a concept has its origins in the mathematical writing
of Abu Abdullah Mohammed ibn Musa al-Khwarizmi, a ninth-century Per-
sian mathematician whose work is commonly considered to have served
as the basis for today’s algebra (al jabr). In fact, the word algorithm is
also generally said to be a reference to al-Khwarizmi’s name (Hillis 1998).
As noted by Steiner (2012), however, the algorithm as a concept predates
al-Khwarizmi’s work, or formal mathematics in general, by several mil-
lennia. As Steiner observed, the algorithm—procedural activity—existed
long before al-Khwarizmi explicitly described the algorithm as a concept
involving procedure. Even though it was not necessarily defined as a clear
concept until al-Khwarizmi established it, Steiner argued, the algorithm
has played a number of important roles in daily or common cultural activi-
ties for millennia:

The Babylonians employed algorithms in matters of law; ancient
teachers of Latin checked grammar using algorithms; doctors have
long relied on algorithms to assign prognoses; and countless num-
bers of men [. . .] have used them in an attempt to predict the future.
(Steiner 2012, 54)

Although the idea of algorithmic procedure has been a part of human
culture and behavior long before the ninth century CE, it is through al-
Khwarizmi’s writing that the algorithm becomes codified as a procedural
framework whose functionality is articulated through a specific gram-
mar; specifically for al-Khwarizmi and his work, this grammar would later
come to be called algebra.

For al-Khwarizmi and for mathematicians since, the algorithm was the
procedural framework through which a mathematical equation would be

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  35

calculated. By constructing a framework to which a mathematician could
adhere in order to solve discrete problems, the capabilities of symbolic
systems to reflect logical procedures were suddenly clearly articulated.
One example of al-Khwarizmi’s algebraic algorithm in action demon-
strated how a mathematician could determine the value of a particular
squared number: “[if ‘f]ive squares are equal to eighty;’ then one square
is equal to one-fifth of eighty, which is sixteen” (1831, 7). In mathematical
notation, this equation can be demonstrated in the following steps:

Step 1: 5x2 = 80
Step 2: x2 = 80 * 1/5
Step 2a: x2 = 80/5
Step 3: x2 = 16

The algorithm can be extended further to determine the value of the
square root:

Step 4: √x2 = √16
Step 5: x = 4

The procedure to determine the value of x2 involves condensing as many
relevant operations of the equation as possible so as to calculate quickly
and accurately the numerical value of x2. While the symbolic mathematical
notation by which algorithms could be most efficiently expressed was not
developed until several centuries after al-Khwarizmi, the potential of algo-
rithmic power for analytical and utilitarian employment had been clearly
established.

This power has become most obviously demonstrated through the
application of algorithms for computational ends, thanks to the rise of
computers and the scientific and engineering disciplines dedicated to
their study and development. In the mid-nineteenth century, Ada Lovelace
would lay out a vision for the potential of computers to operate by means
of programmed (algorithmic) instructions:

A new, a vast, and a powerful language is developed for the future use
of analysis, in which to wield its truths so that these may become of
more speedy and accurate practical application for the purposes of
mankind than the means hitherto in our possession have rendered
possible. Thus not only the mental and the material, but the theoreti-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

36  •  rhetorical code studies

Revised Pages

cal and the practical in the mathematical world, are brought into more
intimate and effective connection with each other. (2002, 19)

Lovelace’s description of a possible language through which to manipu-
late computer technologies (and specifically Charles Babbage’s “Ana-
lytical Engine”) refers implicitly to algorithmic procedure for the sake of
mathematical analysis. What had not yet developed at the time, but which
would emerge just after her death, was a clear logic to drive algorithmic
grammars toward practical ends.

Modern-day computers operate on a form of logic known as Boolean
logic, after the nineteenth-century logician George Boole, who attempted
to replicate the patterns of human thought through the logic of mathemat-
ical algorithms (Hillis 1998). There are only a few fundamental concepts
that drive Boolean logic, the most notable being the binary states of “true”
and “false” (or other arbitrary comparison states, e.g., “on” and “off,” or
“1” and “0”). Shannon (1937) demonstrated how electrical circuits, by be-
ing opened or closed, could serve as a viable application of Boolean logic.
Shannon’s work was used as the basis for programming machines to per-
form mathematical calculations, which in turn set the stage for the devel-
opment of current computer technologies.

By checking the state of one or more given data elements within a
computational system—what is referred to as “input”—a Boolean algo-
rithm can allow a software program to execute particular computational
tasks so as to express a relevant “output” body of data. Hillis (1998) has
described algorithmic procedure and the computation it enables as be-
ing “all about performing tasks that seem to be complex (like winning
a game of tic-tac-toe) by breaking them down into simple operations
(like closing a switch)” (4). In other words, computer science makes sig-
nificant use of Boolean-powered algorithms in part because algorithms,
especially procedures that can be automated by a computational system,
align effectively with the Boolean foundation upon which computers
and electronic data work.

Due in no small part to the increasing ubiquity and status of computer
technology in contemporary society, the algorithm has become a signifi-
cant concept for a wide range of popular culture as well as for science and
mathematics. Berlinski’s (2000) The Advent of the Algorithm, MacCormick’s
(2011) Nine Algorithms That Changed the Future, and Steiner’s (2012) Automate
This: How Algorithms Came to Rule Our World all explicitly identified the al-
gorithm as a paradigm-shifting phenomenon whose importance has had

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  37

world-changing effects. For Steiner, the increasing control that complex
computer algorithms possess in contemporary culture is critically sig-
nificant, as those who can create, understand, and manipulate complex
algorithms with digital technologies have arguably become a new ruling
class (an argument that has been taken up by other critics, such as Rush-
koff 2011). Across these texts, there is a shared central premise that algo-
rithms, especially those meant to be expressed via computer technology,
are quickly gaining—or already possess—a prominent role at the heart of
the networks and systems that power society. This prominence extends
far beyond the significance of the culturally relevant algorithms that have
persisted for centuries (e.g., those used in medicine, law, etc.). It may be
accurate to say that to be aware of algorithmic procedure or to be able to
work with algorithms is to be able to influence the trajectory of social, cul-
tural, and political development to extents far beyond those phenomena
that can be influenced by individuals who are unaware or uninvolved with
algorithmic procedures.

While the vast majority of academic and professional discourse related
to algorithms—which has overwhelmingly taken place in the disciplin-
ary spheres of mathematics, computer science, and engineering—has fo-
cused on computational algorithms, the conceptual constraints surround-
ing algorithmic procedures tend to vary from discipline to discipline; the
specific field in which a scholar or practitioner works has some influence
upon how the scholar is likely to approach algorithms and their potential
for certain tasks. This understanding is important as the particular lan-
guage used by a scholar or practitioner to describe and explain what an al-
gorithm is and does illuminates the recognized potential(s) that its author,
or his or her disciplinary community, attributes to algorithmic procedure.

For example, computer science tends to base its definition(s) of the
algorithm on the logic of the precise and discrete mathematical models
that serve as the foundation for the discipline. Brassard and Bratley (1996)
defined an algorithm as “a set of rules for carrying out some calculation,
either by hand or, more usually, on a machine” (1). For Hillis (1998), it is
“a fail-safe procedure guaranteed to achieve a specific goal” (78). Black
(2007) defined the term as “a computable set of steps to achieve a desired
result” (n.p.). Clearly, there is a conventional understanding of the al-
gorithm as relating to replicable procedures made up of discrete opera-
tions to be executed through a computer or with its assistance. But not all
scholars in the field describe algorithms in such discipline-specific terms.
Edmonds (2008), for example, has stated that

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

38  •  rhetorical code studies

Revised Pages

[a]n algorithm is a step-by-step procedure which, starting with an in-
put instance, produces a suitable output. It is described at the level of
detail and abstraction best suited to the human audience that must un-
derstand it. In contrast, code is an implementation of an algorithm that
can be executed by a computer. (1)

Edmonds is quick to separate algorithm as concept from the code-centric
applications of algorithmic procedure for computer science (e.g., soft-
ware), organizing the latter within the hierarchy of the former; as a result,
through the expanded definition of the term, the possibilities of the al-
gorithm beyond the scope of computer science become much more situ-
ational and flexible than might otherwise be conventionally assumed.

Other fields with less direct foundation in mathematics often more
readily accept the algorithm to possess these more fluid qualities than
do those fields relevant to computer science. Accordingly, the means by
which algorithms are approached and used for ends in these other disci-
plines are quite different as well. Ramsay (2011) described the algorithm
as a concept in relatively flexible terms as “a method for solving some
problem” (18). This definition has some significant overlap with that of
heuristic, generally defined as a broad framework for problem solving and
which, in rhetoric, is tied closely to the canon of invention through its em-
phasis on discovery (Herrick 2016, 27). While such overlap is not inher-
ently problematic, the less “clear” a problem-solving method becomes,
the more difficult it may be to reach consensus on whether that method
performs in either an algorithmic or heuristic sense.

Gillespie (2016), meanwhile, has identified a range of context-specific
metaphors for algorithm and how its understanding is communicated:
trick, synecdoche, talisman, and commitment to procedure. Each of these
metaphorical associations, Gillespie suggested, indicate both an identi-
fication of a particular audience (one that is expected to grasp and accept
said metaphor) as well as of the individuals and communities employing
those metaphors, since they do so for specific purposes in order to induce
their audience(s) to some relevant action. For Gillespie (2016), this em-
ployment is “discursive work [that] the term performs” while rhetors and
audiences are forced to navigate its multiple meanings (18).

Each of these cases brings to mind Steiner’s (2012) overview of the al-
gorithm as procedure relevant beyond computer science to law, medicine,
grammar, and other diverse efforts toward predicting the future. Through
these definitions of algorithm as procedure intended for purposefully solving

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  39

problems, nonscientific disciplines bring to the conversation an emphasis
on how humans approach the accomplishment of particular tasks (and
not necessarily what those approaches will be in any given situation). In
order to clarify what the significance of this conceptual shift means for the
rhetorical study of algorithms, I will situate the applications of algorith-
mic procedure across fields within the humanities.

Algorithmic Criticism in the Humanities

An inclusive understanding of algorithms as problem-solving procedures
certainly incorporates into its scope the computational algorithms that
drive electronic technologies and computer software. But humanistic in-
quiry relating to algorithms focuses on how a particular algorithmic pro-
cedure reflects the goals and values of its developer(s) and on the means
by which computational procedures facilitate novel approaches to critical
engagement and meaning making rather than focusing on the technical
expertise that conventionally accompanies particular forms and applica-
tions of computation. Such inquiry explores both the complex situations
that algorithms impact and the situations in which certain algorithms are
composed, including how those compositions are structured in order to
make a particular engagement. For rhetoric, this combination involves
multiple scales of rhetorical activity, from the exigences that spur the cre-
ation of a given body of code to the specific devices used to frame and de-
scribe any response(s) to those exigences.

Even though my focus here will ultimately consider how algorithms
are useful and significant components of persuasion, especially in regards
to contemporary rhetorical activities, I first want to outline how algorith-
mic procedure is used in multiple fields within the humanities. The re-
lationship between algorithm and humanistic production has existed for
millennia, from the classical enthymeme to the more recent phenomenon
of digitally mediated manipulations of massive data sets.

Humanistic Algorithms before and without Computers

The idea of procedure—whether explicitly connected to “algorithm” or
not—as a means of generating or facilitating action has accompanied cre-
ative and critical practices since early uses of mnemonic devices to recite
oral poetry; as Ong (2002) has noted, “In a primarily oral culture, to solve
effectively the problem of retaining and retrieving carefully articulated

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

40  •  rhetorical code studies

Revised Pages

thought, you have to do your thinking in mnemonic patterns, shaped for
ready oral recurrence” (34). As I explore below, the application of diverse
algorithms for humanistic, and especially rhetorical, purposes remains a
significant component of productive and critical activity, activity that re-
flects Nowviskie’s (2014) description of algorithms employed for human-
istic activity that “can be understood as problem solving and [. . .] as
open, participatory, explorative devices” (151). The identification of an al-
gorithmic humanities is integral to understanding how algorithms work
for persuasive ends, a necessary requisite for examining algorithms and
code as rhetorical communication.

enthymeme as algorithm

As I have argued elsewhere (Brock 2014), the algorithm most central to
Western rhetoric is the enthymeme, a concept that has predominantly been
defined as an incomplete logical argument that, through its procedural
logic and presentation, compels an audience to complete the argument in
order for it to be properly and effectively expressed (Bitzer 1959; Walker
1994). Specifically, the enthymeme is a rhetorically oriented syllogism, a set
of premises (major and minor) that, in combination, lead to some sort of
conclusion or result. For a complete syllogism, the relationship between
these elements is explicitly stated (see below). For an enthymeme, this re-
lationship is probable and implicit, as its logic remains procedurally sus-
pended until audiences identify it on their own. As Hairston (1986) has
argued, “The person who argues from an enthymeme is [usually] not try-
ing to prove a proposition; he or she is only trying to establish high prob-
ability” for an audience to accept the rhetor’s proposition (76). The most
well-known syllogism includes the following components:

	1.	 All humans are mortal. (Major premise)
	2.	 Socrates is a human. (Minor premise)
	3.	 Socrates is mortal. (Conclusion)

This syllogism works categorically, meaning that it defines Socrates based
on the categorical descriptions into which he fits, according to the state-
ments’ parameters (all A are B; C is A; therefore, C is B). More complex syl-
logisms can be constructed to create disjunctive or conditional reasoning.
For example, the following is a disjunctive syllogism:

	1.	 We will meet either in Paul’s office or in the conference room. (Ma-
jor premise)

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  41

	2.	 We are not meeting in the conference room. (Minor premise)
	3.	 Therefore, we are meeting in Paul’s office. (Conclusion)

Conditional syllogisms generally include a determination of a condition
being met. For example, one might say, “If it is nighttime, then one needs
to drive with one’s car’s headlights on” as one of its premises. These dis-
tinctions in how syllogisms can be constructed are crucial for algorithmic
logic, since the variety of arguments made possible through categorical,
conditional, and disjunctive reasoning all work in varied ways to dramati-
cally increase the flexibility with which one could frame the argument for
a particular case logically and rhetorically.

A syllogism may be chained together with other syllogisms to create a
polysyllogism, a more complex and nuanced line of reasoning than any of
its component logics might establish on its own. Carroll (1973) demon-
strated a number of polysyllogisms as puzzles to be solved (what a rhetori-
cian might reframe as “enthymemes to be completed”) in his classic Sym-
bolic Logic. One such example is presented here:

	 (1) 	All writers, who understand human nature, are clever;
	 (2) 	No one is a true poet unless he can stir the hearts of men;
	 (3) 	Shakespeare wrote “Hamlet”;
	 (4) 	No writer, who does not understand human nature, can stir the

hearts of men;
	 (5) 	None but a true poet could have written “Hamlet.” (Carroll 1973,

170)

To complete the polysyllogism, one would ultimately need to reason that
Shakespeare was clever. More fully, the deduction would recognize that
a true poet is clever, and Shakespeare is argued here to be a true poet.
Specifically, Shakespeare is a true poet [statement 5] (as he wrote Hamlet
[statement 3]). As a true poet, he can stir the hearts of men [statement
2], which means he is a writer who understands human nature [statement
4]. Because he is such a writer, he is clever [statement 1]. The deductive
process for Carroll’s polysyllogistic example is less direct or linear than a
simpler syllogism, but its computational nature is indisputable. One can-
not move forward with any of these ideas until their relations have been ap-
propriately sorted or processed. Indeed, many contemporary algorithms
overwhelmingly rely on complex polysyllogistic reasoning to compute
data dynamically in numerous iterations.

In contrast to a fully articulated syllogism, the enthymeme functions

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

42  •  rhetorical code studies

Revised Pages

algorithmically by leaving implicit reference(s) to one or more of the syl-
logism’s components so that an audience will compute the logic of those
missing components. Walker (1994) has hinted at the enthymeme as a
kind of algorithm in his description of the enthymeme as the center of
“argumentative or suasory procedure” (61). Similarly, Walton (2001) ar-
gued that the enthymeme suggests a “plausibilistic script-based reason-
ing” commonly explored in artificial intelligence research (93). One such
example of the enthymematic algorithm is the following statement that
recalls an example syllogism presented earlier in this chapter: all humans
are mortal; thus, Socrates is mortal. This statement obliges the reader to make
an internal logical leap in order to discern that Socrates is mortal because he
is a human. The “Socrates” syllogism could be rephrased by using any two
of its three components; for example, the enthymeme might be stated as
follows: Socrates is a human and therefore is mortal. The reader’s ability
to follow this argument hinges on recognizing (i.e., processing) the im-
plicit association that Socrates’ mortality is dependent on his humanity
because all humans are mortal. In other words, the enthymeme provides an
opportunity for a rhetor to directly engage an audience in the expression
of an algorithm for rhetorical ends.

Specifically, the computational operation—the completion of the syl-
logism—is constructed in such a way as to convince the audience how best
to calculate the remaining variables. The audience “becomes” a computer
in order to express this procedure by reaching the (likely anticipated) out-
come. For developers, the enthymematic analogy can be extended to types
of procedures in order to suggest how to solve other sorts of computa-
tion in similar manners. In this sense, the algorithm works beyond the
constrained sense of “a method for solving some problem” (Ramsay 2011,
18) and instead demonstrates its fundamental flexibility and contingent
nature as a process through which an audience is led to persuade itself to
achieve action, via such means as deliberation and conditional deduction.

One trend that aids the emergence of rhetorical code studies is the
relatively recent exploration by several rhetoric scholars of the bounds
of enthymematic persuasion. Specifically, these scholars have examined
whether the enthymeme can function as a rhetorical tool with value be-
yond the scope of conventional discourse. For instance, Smith (2007)
demonstrated how visual arguments make use of enthymematic princi-
ples of probability and implicit syllogistic completion in order to persuade
viewing audiences. Walton (2001) identified the enthymeme as an integral
component of artificial intelligence research, tying together technological

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  43

(and technologically mediated) modes of “thought” (i.e., reasoning) and
communication.

Conceptually speaking, at the heart of the enthymeme is a recognition
of computationally algorithmic procedures as inherently interrelated with
this central form of rhetorical reasoning. The outcome for an enthyme-
matic algorithm is expressed by a collaborative effort on the part of both
rhetor, who initially provides an enthymeme as part of his or her argu-
ment, and audience, who completes its logic as part of an engagement
with that argument. While algorithms in technological contexts may ini-
tially seem less enthymematic than mechanical, they nonetheless require
the contingent interpretation of input to expression in order for its subse-
quent action to successfully communicate its meaning.

the algorithmic rhetorical situation-ecology

Another of the most significant algorithmic frameworks related to the
study of rhetoric is that of the “rhetorical situation” (Bitzer 1968; Vatz
1968) and its more complex ecological rearticulations (Cooper 1986; Ed-
bauer 2005). The rhetorical situation involves several interrelated compo-
nents that together facilitate an effective rhetorical activity. First, a rhetor
identifies a relevant exigence they wish to engage. An exigence is commonly
defined as “an imperfection marked by urgency [. . .] something wait-
ing to be done” (Bitzer 1968, 6). It is the catalyst for rhetorical, and any
subsequent, action. Further, an exigence requires the capacity for change
to occur; a problem that cannot be avoided or resolved exists outside the
bounds of rhetorical intervention. It is only once this initial variable is es-
tablished, whether understood as “recognized” or “invented,” that the al-
gorithmic quality of the rhetorical situation can begin to be processed.

The second situational component is audience, the body of individuals
that a rhetor hopes to induce to action, a body whose members “are ca-
pable of being influenced by discourse and of being mediators of change”
(Bitzer 1968, 8). An identification of audience includes a recognition of the
audience’s values, background, and ideological leanings as well as of the
modes of communication most likely to persuade the intended audience
through their employment. For code, as with other forms of communica-
tion, such an evaluation relies upon recognizing when and how a particu-
lar approach could be appropriately effective, not whether that approach it
is the “objectively” most superior means of influencing an audience.

The third component is constraint, the limitations and influences ex-
erted upon rhetor and audience alike as part of the expression of a rhe-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

44  •  rhetorical code studies

Revised Pages

torical activity. For Jasinski (2001), constraints “are circumstances that
interfere with, or get in the way of, an advocate’s ability to respond to
an exigence” (516). Rhetorical constraints include all restrictions upon
a rhetor in how they might induce an audience to act, from modes of
communication to particular suasive strategies or even specific language
decisions.

Once an exigence has spurred a rhetor to act, and once that rhetor has
identified an audience and the set of constraints framing the audience’s
potential reception of the provided argument, what comes next? The rhe-
torical situation’s algorithm is expressed: the rhetor makes use of their
chosen variables to bring about the intended outcome, that is, the change
sought in regards to the spurring exigence. Jasinski (2001) has suggested
that even the definition of the relevant situation is itself a sort of exigence
to be transformed through its identification. The range of possible re-
sponses to a given rhetorical act is contingent on the relevant exigence,
audience, and constraints, and an audience may not always respond in the
same way to a given rhetor or argument.

It is in this space for chaos, for unpredictable or unanticipatable re-
sponses, where the algorithmic character of the rhetorical situation
becomes most intriguing. The rhetor anticipates how each situational
variable might (or is likely to) influence the others, but this anticipation ul-
timately remains one influence of many upon the situation. It is only when
the rhetor attempts to express their argument through the situational algo-
rithm that any action, whether intended or not, can be achieved. Whether
consciously or otherwise, a rhetor computes the procedure that emerges
when enough of the situational variables have been identified to assemble
an argument in pursuit of a particular goal.

Edbauer (2005) has observed that the rhetorical situation, as defined by
both Bitzer (1968) and Vatz (1968), is problematic in its reduction of rhe-
torical activity to a single equation of exigence + audience + constraint +
rhetor, since numerous situations interrelate at any time in a larger rhetor-
ical ecology of diverse actors, motivations, and exigences. Edbauer’s (2005)
critique is significant for rhetorical code studies in that it draws greater
attention to the complexity of the connected algorithmic procedures that
make up acts of rhetorical communication. In other words, while it is im-
portant to recognize how rhetor, audience, constraint, and exigence influ-
ence one another in a bounded, individual situation, it is just as important
to acknowledge that these dynamics are themselves components of an

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  45

even greater ecologically rhetorical algorithm affecting broader discursive
trends across various agents and channels of persuasive potential.

Recognizing the flexibility of the rhetorical situation-ecology is inte-
gral to an understanding of code-based action as rhetorical. Specifically,
it points to the indeterminacy between specific computational operations
and the potential for those operations to facilitate ranges of activity in what
they do (i.e., how computation results in subsequent action), how they are
constructed, and what they suggest about inventing similar operations for
other computational purposes. While the particular steps of a given proce-
dure are generally thought of as discrete, the possibilities they suggest—
and the situational concerns they address and create—are inherently
complex and indeterminate, and discussions of the rhetorical qualities of
procedure necessitate this recognition.

aesthetic and poetic algorithms: the oulipo

While I ultimately lead us toward a discussion of algorithms for rhetori-
cal purposes specifically, I first want to discuss briefly some creative (aes-
thetic and poetic) approaches to algorithmic scholarship and production
that have gained traction in other fields within the humanities. For prac-
tices of literary composition as procedure, the group of mathematicians
and writers in the mid-twentieth century, who gathered under by the name
Oulipo (an acronym for the French name Ouvroir de Littérature Potentielle, or
“Workshop for Potential Literature”), may provide the clearest and most
thorough insight on how creative works may be generated from the con-
straints of algorithmic structures. The members of the Oulipo recognized
that “[m]athematics—particularly the abstract structures of contemporary
mathematics—proposes thousands of possibilities for exploration, both
algebraically (recourse to new laws of composition) and topologically
(considerations of textual contiguity, openness and closure)” (Le Lionnais
2007, 27). That is, the Oulipo acknowledged the possibilities of flexible
and contingent meaning making within the framework of mathematical
computation, specifically regarding how computation could be used to in-
fluence the composition of rhetorical texts. As noted by Queneau (2007),
the objective of the Oulipo was “[t]o propose new ‘structures’ to writers,
mathematical in nature, or to invent new artificial or mechanical proce-
dures that will contribute to literary activity: props for inspiration as it
were, or rather, in a way, aids for creativity” (51). The composition of struc-
tures, complete with rules and constraints for successful invention within

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

46  •  rhetorical code studies

Revised Pages

those structures, is significant for this discussion because it emphasizes
the possibilities of procedural expressions rather than the skill with which
a particular expression is created in reflection of the nuances surrounding
a specific situation.

The explicit play with algorithmic procedure by the Oulipo was em-
braced because, according to Bénabou (2007), “[i]f one grants that all
writing [. . .] has its autonomy, its coherence, it must be admitted that
writing under constraint is superior to other forms insofar as it freely fur-
nishes its own code” (41). It is not so much that writing within a set of
constraints produces texts of a higher quality, but that a text recognized to
be written under constraint(s) was considered superior by the Oulipo be-
cause its author(s) and readers alike could appreciate how its algorithmic
procedures were expressed in order to produce the text “output.” This is
not to suggest that the limits of procedural constraint (the amount and
range of expressions that could be produced) are necessarily restrictive. For
example, Queneau’s Cent Mille Millardes de poèmes (“One hundred thousand
billion poems”), a collection of ten sonnets that all share the same rhyme
scheme, offers the reader 1014, or 100,000,000,000,000, potential poems
that could be constructed by the reader swapping in or out a given line
from one of the sonnets with the appropriate line from another, e.g. for
sonnets A–J, one could use line 1 from sonnet A, line 2 from sonnet D, line
3 from sonnet F, line 4 from sonnet A, etc. (Berge 2007, 118–21).

While the members of the Oulipo explored these structures to dem-
onstrate the possibilities of invention through procedural constraint, it is
also accurate to say that they highlighted the existing means of rhetori-
cal invention and arrangement and offered new insight into these means
by drawing attention to the procedural structures that underpin decisions
surrounding particular rhetorical situations. To repeat Ramsay’s (2011)
definition from earlier in this chapter, the algorithm is complicated far be-
yond its general definition as a “method for solving some problem” (18).
In particular, Oulipian algorithms function rhetorically in that they em-
phasize the potential for constructing meaning through particular literary
structures of constrained computation. This potential has even begun to
be explored in depth with software code languages; Lopes (2014) built on
Queneau’s (2009) Exercises in Style in order to demonstrate stylistic influ-
ence on programming activities by following Queneau’s example of writ-
ing the same vignette through the lenses of ninety-nine different literary
styles. Lopes wrote the “same” program, a means of analyzing term fre-
quency, in more than thirty different variations, based on the fundamental

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  47

stylistic concerns that guide each approach. As Lopes noted, “By honoring
different constraints, we can write a variety of programs that are virtually
identical in terms of what they do, but that are radically different in terms
of how they do it” (2014, xii). Rhetoricians interested in the complexity of
diverse possibilities that emerge from constrained situations—whether
digital in nature or not—can take a great deal from the Oulipo’s experi-
ments with algorithmic approaches to invention.

Humanistic Algorithms in the Age of Computers

While algorithmic procedure and humanistic activity have been inter-
twined for much of human history, it is also true that computer technol-
ogy has radically transformed this relationship. As a result, algorithm has,
through code, developed beyond serving as a means for performing tra-
ditional rhetorical or critical action through the construction and execu-
tion of procedural activities. Specifically, it has become a form of meaning
making in its own right. For computers, the algorithmic code that makes
up digital software is rhetorically powerful thanks to its ability to engage
data, machine, and human alike, albeit in different ways and for different
ends. For most scholars, rhetorical engagement with and in code serves
primarily as a tool to facilitate other iterative experiences, but when we
recognize code as an algorithmic mode of communication, used specifi-
cally for rhetorical ends, we can approach a moment of clarity in which
we reconsider how code influences us—humans and nonhuman technol-
ogies—to act through a quality that can best be described as algorithmic
persuasion.

algorithmic criticism

Possibly the most explicit use of algorithmic procedure to facilitate hu-
manities scholarship, both conventional and unconventional, is Ramsay’s
(2011) concept of “algorithmic criticism.” For Ramsay, algorithms provide
avenues for literary research and interpretation through their expressive
transformations of texts into novel “paratexts” that reveal insights that are
otherwise unavailable or difficult to recognize. Paratexts, for Ramsay and
other literary scholars interested in algorithmic criticism, are texts trans-
formed, deformed, and performed in innovative ways and for various ends
through procedural mutation and reconfiguration; Ramsay argued that
“[t]he critic who puts forth a ‘reading’ puts forth not the text, but a new
text in which the data has been paraphrased, elaborated, selected, trun-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

48  •  rhetorical code studies

Revised Pages

cated, and transduced” (2011, 16). Among the means by which Ramsay
demonstrated the literary potential for algorithmic procedure is the aggre-
gation and computation of particular types of data in order to restructure
the literary reading experience.

For example, Ramsay compared the most frequently used terms and
ideas provided by the major characters in Woolf ’s The Waves, demonstrat-
ing how the commonalities between characters’ most frequent terms al-
low readers to draw new connections between those characters. Included
in table 2.1 (Ramsay 2011, 13) is an excerpt from the expressed set of fre-
quently used terms for two of the novel’s six protagonists using a relevant
algorithm employed by Ramsay. Ramsay’s line of inquiry sought out the
terms that were not only most frequently used but also were not used fre-
quently by any other character, that is, the terms that were either unique
to, or at least primarily associated with, each protagonist.

One conclusion related to new connections that Ramsay draws is that
although the character Louis (as the only Australian in the group) is self-
conscious of his accent, the other characters seem to pay that cultural dis-
tinction little attention: no one else, for instance, ever mentions the terms
“Australian” or “accent.” To the others, these concepts seemingly do not
matter since they do not appear among the terms used frequently by those
characters (Ramsay 2011, 12–14).

This sort of reading by Ramsay—in which previously unrecognized

Table 2.1. Excerpted lists of term frequency from Woolf’s The Waves,
compiled by Ramsay (2011)

Louis Neville

mr
western
nile
australian
beast
grained
thou
wilt
pitchers
steel
attempt
average
clerks
disorder
accent

catullus
doomed
immitigable
papers
bookcase
bored
camel
detect
expose
hubbub
incredible
lack
loads
mallet
marvel

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  49

meaning is exposed through expressions of algorithmic arguments—
demonstrates not only a new form of reading but also a new form of re-
search: the development of a body of paratexts reflecting the logics of com-
putational approaches to critical investigation and interpretation. In other
words, the emphasis for algorithmic criticism should be placed as much
on how relevant critical work occurs, and what happens in the process,
as on what algorithmic criticism reveals through its individual, iterative
expressions.

Ramsay’s approach to criticism clearly identifies algorithmic proce-
dure as a valuable tool to be used for scholarly criticism. Specifically, the
use of algorithms to explore novel means of reading allowed Ramsay to
generate paratexts that transform a given text or set of texts into new ob-
jects of study. When employed in this manner, the algorithm is a method
for interpretation that, in part, quantifies those components of an original
text that a critic has deemed potentially significant, which is the text as
transformed into a paratext. Further, the algorithm itself becomes an ar-
gument for interpreting a text through a particular interpretive lens (i.e.,
the parameters of the algorithm itself), drawing connections that may or
may not be clearly “present” or important in a traditional reading of the
text. The significance of Ramsay’s algorithmic criticism is that it affords
scholars a new way of engaging texts for humanistic ends by algorithmi-
cally discovering meaning within a text. That said, the constitution of al-
gorithmically transduced literature generated through the deformation of
an initial text does not interfere with conventional scholarly work: the al-
gorithmic critic produces his or her own text (the algorithmic paratext) to
be interpreted in addition to the original text.

critical code studies: algorithm as communication

In contrast to Ramsay’s work with algorithms as a tool or lens for criticism
is the main body of scholarship related to critical code studies, which puts
at its focus code as text. Implicitly, this focus suggests that a given body of
code, and its author(s), have something meaningful to offer to its reader,
whether that meaning is provided intentionally or not. An additional sig-
nificance of focusing on code is that the algorithm itself becomes the object
on which inquiry is centered: how it is structured, phrased, and expressed
all contribute clearly and explicitly to the interpretive experience. In this
light, code is no more a simple tool than any other form of language, and
its capacity for meaning making is not only acknowledged but empha-
sized and celebrated.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

50  •  rhetorical code studies

Revised Pages

It is easy to consider the semiotic value of code when its syntax closely
resembles that of natural language, and many languages use syntax re-
sembling that of English. The idea that code could and should be written
primarily for human readers, rather than for the computers that interpret
the code, has its origin in Knuth (1992), whose idea of “literate program-
ming” required a radical reconsideration of how computer science might
be approached. For Knuth, it was crucial that code be composed in such
a manner that its meaning was clearly articulated to human audiences; its
ability to be executed properly or accurately by a computer was secondary.
Essentially, the idea is that human collaborators should be able to com-
prehend any of their colleagues’ work and the functional intent of that
work. This perspective has been echoed by influential programmers since
then, including in several texts on fundamental programming principles
and practices (Kernighan and Plauger 1978; Kernighan and Pike 1999).
Matsumoto (2007) urged his audience specifically to treat code “as an es-
say,” and he demonstrated doing so through a series of example programs
written in the Ruby language (477).

There is a relationship between saying (describing) and doing (com-
puting or executing) in source code and the executable programs they
describe, but this relationship is not always emphasized or addressed in
specific code texts. “Codework,” a kind of code poetry, blurs that relation-
ship with a similar relationship in written language between “saying” and
“appearing,” what Lanham (1993) referred to as a bistable oscillation be-
tween looking “AT and then THROUGH” texts, an oscillation that is never
eradicated but might fluctuate to varying extents between audiences and
contexts (5). Cayley (2002) wrote codeworks in order to experiment with
the possibilities of maximizing code’s ability to perform computational
tasks while also clearly communicating its goals to a reader in a conven-
tionally understandable manner. For Cayley, “codework” as a term high-
lighted its distinction from the vast majority of code that is technically
productive but not intended to be artistic in form. The following is a brief
excerpt from one such codework:

if invariance > the random of engineering and not
categorical then

 put ideals + one into media
 if subversive then
 put false into subversive
 end if

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  51

 if media > instantiation then
 put one into media
 end if

(Cayley 2002)

The above was composed by Cayley in HyperTalk, a programming lan-
guage developed in the late 1980s for the Macintosh hypermedia program
HyperCard. Its syntax, like that of many other high-level programming
languages, closely resembles that of English, making it easily readable
by humans (assuming those humans understand English). The larger
program from which this excerpt was taken is a text generator, with the
various terms Cayley included here (such as media, subversive, and
ideals) serving as “containers” for variable data values as part of the
code’s expression. For example, media holds a number the value of which
changes depending upon certain conditions (such as whether the current
value of media is greater than the current value of instantiation),
not unlike the contingent meaning of any term for a particular context and
discourse community. The meaning of the code, then, emerges not only
from what the code text says in English (or at least near to it) but what
it does computationally, even if we might view the functional purpose of
this, or any other example, program to be trivial (Sample 2013). Cayley ac-
knowledged the code’s “ambiguous address” of both human reader and
computer interpreter, implicitly suggesting that there existed rhetorical
situations for each of these audiences (2002).

While Cayley’s example is relatively readable and accessible, most
code—as Marino (2006) has observed—does not closely resemble literature
or other genres or forms of conventional discourse. This means that the
dichotomy of audiences for code-based communication may seem to skew
more toward the technological than to the human. A number of rhetoricians
and critical code scholars have interrogated this balance, questioning the
value of a traditional human-oriented communicative hierarchy in favor of a
more distributed, relational network of human and nonhuman actors (Arns
2005; Cummings 2006; Brown 2015; Nicotra 2016).

Arguments in Code as Algorithmic Meaning Making

Just as algorithmic procedure has provided means for artistic and poetic
invention, so too have algorithms served rhetorical invention, described
and expressed not only in code but in a variety of other communicative

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

52  •  rhetorical code studies

Revised Pages

modes. The notion that an algorithm can and does work rhetorically is
a radical departure from its conventional definition, which emphasizes
discrete procedural execution of its components. In some computer sci-
ence contexts, there is significant discussion about the optimal way to
construct a particular program or function in a given language, focusing
not so much on what a procedure means to do but rather on how to clearly,
effectively, and efficiently state and structure the steps of that procedure.
There is an implicit recognition of the procedure’s purpose and its value,
but those qualities do not occupy the center of discussion. As Edmonds
(2008) noted, novice programmers often find themselves needing to shift
mentally “from viewing an algorithm as a sequence of actions to viewing
it as a sequence of snapshots of the state of the computer” (6). This shift,
he argued, is significant because it draws attention to how code computes
data from one action to the next within a procedure rather than on what
the end result does or means. In other words, the scale of critical inquiry
assumes that the point or goal of a procedure is already determined or
understood, rather than remaining germane to the discussion about how
best to solve a relevant problem.

The novice mentality described by Edmonds (2008) is closer to the
mark for thinking critically in regards to algorithms and rhetoric than
the conventional “learned” mentality, since the novice student has not yet
been trained to disregard certain critical perspectives in order to approach
the algorithm “correctly” for academic or industrial purposes. Berlinski
(2000) noted that an algorithm is, in addition to the strict, conventionally
computational procedure he had initially provided for his reader, “a set
of rules, a recipe, a prescription for action, a guide, a linked and controlled
injunction, an aduration, a code, an effort to throw a complex verbal shawl
over life’s shattering chaos” (xvi, emphasis added). Berlinski’s reference
to a “prescription for action” is not just a means of defining a particular
action to occur in a certain way but to call for that action to be undertaken
by a certain audience, laying bare the algorithm as a procedural engage-
ment with a rhetorical exigence.

What a recognition of algorithm as meaning making offers rhetoricians,
then, is an opportunity to explore how a seemingly “machinic” manner of
discourse—the code of digital technologies and media—can provide in-
sight into the interplay among the canons of rhetoric to influence the po-
tential expression(s) of a particular rhetorical situation. For example, how
does style affect code-based composition practices in order to facilitate ac-
tion in human agents? How might a critical acceptance of a technological

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  53

code compiler as corhetor (inventor, arranger, etc.) alter our understand-
ing of the rhetorical concepts of constraint or suasion? As digital tech-
nologies become more advanced and accessibly modifiable (in the sense
of code syntax reflecting natural language and performing machinic func-
tions), these rhetorical concerns become increasingly significant. If we
are to understand how we communicate with and persuade one another
with the aid of digital technologies, it is important to understand how we
are capable of stimulating particular types of action through the use of
those technologies. A consideration of the rhetor’s ability to affect, at one
or more code levels, constraints that extend to other modes and means
of action is vastly different from traditional approaches to rhetoric, which
may take as given the technological mechanisms constraining particular
discursive efforts.

Procedural Rhetoric

While it may appear trivial, there is a significant difference between algo-
rithmic meaning making and the related idea of procedural rhetoric. Pro-
cedural rhetoric as described by Bogost (2007) deals with the influential
qualities of procedure-based systems exerted upon individuals who make
use of those systems. Bogost, however, did not elaborate on a wide vari-
ety of code-based algorithms as much as on how algorithms function in
regards to interactive systematic procedures like video games and how
games’ procedures persuade players to act within a game’s context. For
Bogost and for others since (including Sample 2013), the rhetorical ca-
pabilities of a procedural system offered new ways of engaging specific
populations that might otherwise be ignored or overlooked. A video game
teaches its player the rules of its “world” through activity within the game;
the player, through trial and error, explicit tutorial, or both, learns what
behaviors and perspectives are acceptable and “valid” while engaging that
game’s system. The rhetorical action that occurs at the user level empha-
sizes the way(s) a game’s developers intend for its content to be encoun-
tered by a player.

But there is also significant rhetorical action at the developer level,
demonstrated by the ways through which the developers constrained
particular means of user interaction with the processes of a given game
world, effectively making use of another level of procedural rhetoric—
wherein one developer persuades another—to facilitate the game itself.
As Bogost described it, “processes define the way things work: the meth-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

54  •  rhetorical code studies

Revised Pages

ods, techniques, and logics that drive the operations of systems from me-
chanical systems like engines to organizational systems like high schools
to conceptual systems like religious faith” (2007, 3). This definition sug-
gests that code—as a symbolic representation of algorithmic procedure—
might play a prominent part of Bogost’s discussion of procedural rhetoric.
Bogost noted, however, that some processes that “might appear unex-
pressive, devoid of symbol manipulation, may actually found expression
of a higher order” and explained how those humans who are perceived
as “breaking procedure” in actuality are constructing new processes, and
expressing them, in order to complete tasks (2007, 5). This adjustment of
emphasis (to “higher order” expression), while hinting at the possibilities
of computation for rhetorical ends, facilitated Bogost’s close analysis of
video games and gameplay experiences as procedural expressions.

Rhetorical procedure has been explored further by Lanham (2003),
who referred to such procedures as “tacit persuasion patterns” (119). For
Lanham, tacit persuasion occurs constantly, since we are almost never
acutely aware of all influences attempting to exert themselves upon us. As
Lanham observed, individuals often “feel” the presence of tactic persua-
sion patterns “subconsciously, even if we do not bring that knowledge to
self-awareness” (2003, 120). This description hints not just at a passive
acceptance of rhetorical appeals but a subconscious engagement with
the variables of a rhetorical situation as well as enthymematic arguments
provided by a rhetor across multiple levels of language. As a scholar in-
terested in speech and writing, Lanham focused primarily on persuasive
techniques available in discursive language, such as rhyme, chiasmus,
alliteration, and anaphora. Each of these devices provides a rhetor with
the ability to draw or hold the attention of an audience that might other-
wise have not bothered to heed an argument. Such devices suggest a sig-
nificance in the argument through the affordances of languages’ stylistics.
While Lanham did not address the possibilities of tacit persuasion pat-
terns or devices in artificial (code) languages, they nevertheless exist and
are already used frequently by many developers working collaboratively, as
will be discussed in subsequent chapters.

Rhetorical code studies continues this conversation in regards to the
potential for expressive action through the languages of computer code.
Code might be described as “inexpressive” in that it creates and commu-
nicates meaning in ways that often differ from conventional invention
and delivery of discursive arguments; it is precisely because of this qual-
ity, however, that its procedural nature can demonstrate expressive out-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  55

comes in novel and unique ways. Here I set aside the specific expressive
acts of procedural execution (which would highlight the general user’s
experience with a particular software program) and instead discuss how
the construction of algorithms in and through code as both text and process
functions persuasively on user and developer as well as, to a lesser extent,
on technological systems including user workstations, servers, network
routers, sharing economies, etc. In other words, my interest in algorithms
is focused on how code, as a medium to describe algorithmic procedures,
is articulated for rhetorical purposes.

Algorithms We Live By: Recognizing Rhetorical Algorithms

In order to discuss how an algorithm can act rhetorically, I turn to investi-
gate how algorithms in code are composed: what they do (the actions they
attempt to induce), what they say (how their operations are constructed),
and how they say it (what those operative constructions mean to differ-
ent audiences). These qualities are not necessarily any different from con-
ventional rhetorical concerns of invention, style, and delivery, but their
construction in code might certainly make it seem as if they are, and Beck
(2016) has demonstrated how algorithms and code function rhetorically
through their performative and linguistic natures. One particularly sig-
nificant quality of code, as with other forms of language, is the symbolic
action (cf. Burke 1969) that a given code operation, or set of operations,
provides, its descriptive qualities making its purpose and function(s) un-
derstandable to various human audiences and facilitating further activity.

Computational processes are similarly metaphorical; the rhetorical ac-
tions they symbolize succeed primarily because of the metaphor-driven
ways human audiences are influenced to understand those processes as
arguments that influence their audiences in particular contexts for par-
ticular purposes. It is also important to observe that writing or speaking
about algorithms (or, potentially, even to algorithms; see Gallagher 2017)
is itself a metaphorical activity that frames procedure as a kind of descrip-
tion. As Bogost (2007) has noted, “only procedural systems like computer
software actually represent process with process” (14). With this in mind,
I will identify some integral means by which code processes make mean-
ing for developer audiences in what those processes do functionally and
in how they are structured for the sake of human readability as well as for
technical or technological expression.

In order to make this argument, I need to demonstrate how relatively

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

56  •  rhetorical code studies

Revised Pages

simple code algorithms appear to, and do, work rhetorically. In the fol-
lowing pages, I address several examples of increasing complexity whose
code texts communicate at various levels the meaningful action they mean
to effect through the computational operations that make up their text
forms. First, I look at FizzBuzz, a program that iterates through a specific
body of data, used in hiring tests to determine applicants’ knowledge of
algorithmic principles. Second, I examine quine, a program that outputs
its entire code content. Third, I turn to HashMap concordance, a program
that tracks word frequency across a set of input text (in this case, Mary
Shelley’s Frankenstein and Bram Stoker’s Dracula).

case 1: fizzbuzz

The first example to be scrutinized, the “FizzBuzz test,” is relatively simple
in construction and intent (although elsewhere I have explored the rhetor-
ical canon of style in greater depth than is offered in the discussion below;
see Brock 2016). It is the focus of a common hiring test for programmers,
intended to weed out applicants who are unable to work through the ba-
sic principles of algorithmic procedure and expression. The goal of this
algorithm is to take the numbers 1 through 100 and print them out, one
at a time, unless they are multiples of three, in which case the word “Fizz”
should be printed, or if they are multiples of five, in which case the word
“Buzz” should be printed. There is an implicit extra rule here; specifically,
numbers that are multiples of fifteen (that is, both of three and of five)
should print out “FizzBuzz.” The entire output of the program—which is
identical across all four of the examples provided below—is the follow-
ing single line of text (although some variations on the test would include
line breaks, spaces, or some other distinguishing markers between each
output iteration):

12Fizz4BuzzFizz78FizzBuzz11Fizz1314FizzBuzz1617Fizz
19BuzzFizz2223FizzBuzz26Fizz2829FizzBuzz3132Fizz
34BuzzFizz3738FizzBuzz41Fizz4344FizzBuzz4647Fizz
49BuzzFizz5253FizzBuzz56Fizz5859FizzBuzz6162Fizz
64BuzzFizz6768FizzBuzz71Fizz7374FizzBuzz7677Fizz
79BuzzFizz8283FizzBuzz86Fizz8889FizzBuzz9192Fizz
94BuzzFizz9798FizzBuzz

Depending upon the language, and even more importantly depending
upon the way a programmer approaches the problem, there may be dozens of

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  57

ways by which one could construct this algorithm effectively, as suggested
by Lopes (2014) in regards to the task-frequency program she wrote in
more than thirty different programming styles. The path ultimately taken
by any particular developer to solve his or her problem provides a great
deal of rhetorical insight about that developer’s abilities, limitations, and
preferences in computing data, using certain languages, and working in
certain development environments.

While the immediate pragmatic goal of the FizzBuzz test is for an ap-
plicant to demonstrate to a potential employer his or her competence as a
programmer, the applicant also demonstrates more generally an under-
standing of how “best” to use a given language (whether defined as com-
putationally elegant, readable, or possessing some other quality). Further,
the applicant also communicates through the written code how he or she
thinks computationally through the frame of that particular language in
order to solve certain types of problems. It is also important to note that
my analysis of the FizzBuzz test, focusing on stylistic influence on proce-
dural expression in code texts, is not meant to erase or elide the discrim-
inatory tactics that can accompany use of such a test or other means of
constructing organizational communities (Steinberg 2014; Burleigh 2015)
or the underrepresentation of women and some minorities in the software
industry and OSS communities (Lopez 2017; Reagle 2013). Both of these
issues influence who is likely to have learned programming (and gain ap-
propriate credentials or degrees) and pursue a position for which this test
would be administered.

In table 2.2, the FizzBuzz algorithm has been written in two similar
but significantly different ways using the syntax of the JavaScript scripting
language, a popular code language used in web pages, PDF documents,
and even desktop applications. This sort of algorithm is described as a
loop because it continues to compute results so long as the proper condi-
tions are met, in this case while the input amount (i) is a number lower
than or equal to 100. Example 2.2.a, on the left, frames its computation
in an initial “catch-all” condition statement, that is, that i is a multiple
of three or of five. (The syntax i%3 checks whether “i divided by 3” has a
remainder of zero.) Then it checks each of those subconditions indepen-
dently of one another. This means that i could simultaneously be both a
multiple of three and a multiple of five, triggering the operation that will
execute when each of those conditions is met (printing both “Fizz” and
“Buzz”), without, in its current form, impacting the outcome of the other
conditional computation. In comparison, example 2.2.b, on the right in

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

58  •  rhetorical code studies

Revised Pages

table 2.2, functions due to a logic of exclusion. First, it checks whether i
is explicitly a multiple of fifteen. If it is not, then the loop checks first if i
is a multiple of three. If that condition is not met, only then does the loop
repeat its check for i as a multiple of five. These conditions are dependent
upon one another: that is, in the code on the right, a number computed to
be a multiple of three is not also computed as a multiple of five.

The variations on how to construct and express a FizzBuzz algorithm
are not limited to these sorts of conditional checks, either. Table 2.3 con-
tains two examples of the algorithm as composed in the Ruby program-
ming language. The major difference between these two examples written
in Ruby lies not in how the specific conditions are constructed (although
the construction does differ between the two) but rather in the type of func-
tion that is used to form the loop itself. This is significant in that there
is a fundamental shift in the logical structure of the loop and also of the
hypothetical larger program of which the FizzBuzz algorithm might be a
representative part. Example 2.3.a, on the left of table 2.3, makes use of
a for loop, which—as with the JavaScript examples—iterates through a
body of data and computes each item within that body before moving to
the next item. In these loops, that data has been the set of integers from
1 to 100, but for is not limited to iterating numerical data. (In Ramsay’s
algorithmic reading of The Waves discussed earlier in this chapter, the
novel’s text served as the data population, separated out into units of in-
dividual words.) Example 2.3.b, however, only imitates that kind of loop-
ing behavior. It technically repeats the operations within its scope a set
number of times and, in doing so, manipulates the value of a variable (i)
within its scope each time. This particular example incidentally includes a

Table 2.2. Two example FizzBuzz loops in JavaScript

Line Example 2.2.a Example 2.2.b

1 for(var i=1;i<=100;i++) { for(var i=1;i<=100;i++) {
2 if ((i%3==0) || (i%5==0)) { if (i%15==0) {
3 if (i%3==0) { console.log("FizzBuzz");
4 console.log("Fizz"); } else if (i%3==0) {
5 } console.log("Fizz");
6 if (i%5==0) { } else if (i%5==0) {
7 console.log("Buzz"); console.log("Buzz");
8 } } else {
9 } else { console.log(i);
10 console.log(i); }
11 } }
12 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  59

line wherein the value of i is changed; it is not inherently connected to
the times method used here. Because of how times operates, counting
begins at zero rather than one, and thus i needs to have an extra number
added to its current value (in line 2, the first operation within the times
block) before the remaining operations can accurately be computed for
the FizzBuzz problem as it is posed.

Conceptually and metaphorically, this distinction between for and
times reflects a fundamental distinction between iteration and repeti-
tion. The for loop suggests to human and machine readers that similar
types of data are going to be computed through a series of operations
whose scope and syntax may be influenced by the specific data being
calculated and modified at any given moment. In contrast, the times
“pseudo-loop” suggests that it will execute the same operations a set number
of times, independent of any input variables; any data manipulated differ-
ently from other data as a part of that loop is an incidental consequence of
its code composition. More generally, each FizzBuzz example—and, more
broadly, any block of code that processes a body of data—is a computa-
tional metonymy: the “loop,” which implies a cyclical return to its origin,
is actually more like a corkscrew. Its abbreviated description of operations
to be executed across its data parameters never truly returns back to “the
beginning” of the code, as each iterative execution transforms the code
both in how it reads and in how it operates, just as the input data is trans-
formed into appropriate output data.

While the function of the FizzBuzz algorithm, as represented by these
examples, may not initially appear to be rhetorical in nature (since it
checks a set of numbers and prints out numbers or words), it nonetheless

Table 2.3. Two example FizzBuzz loops in Ruby

Line Example 2.3.a Example 2.3.b

1 for i in 1..100 100.times do |i|
2 if i%3 == 0 then i = i+1
3 print "Fizz" if i%15 == 0 then
4 end print "FizzBuzz"
5 if i%5 == 0 then elsif i%3 == 0 then
6 print "Buzz" print "Fizz"
7 End elsif i%5 == 0 then
8 if i%3 != 0 && i%5 != 0 then print "Buzz"
9 print i else
10 End print i
11 End end
12 End

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

60  •  rhetorical code studies

Revised Pages

serves as a concise example of the persuasive capabilities of code. Specifi-
cally, the FizzBuzz algorithm provides meaningful information to its ap-
plicant author, to any other human readers (e.g., the employer), and to
the machine related to what the author understands about how to engage
in the manipulation of a particular set of computer data. If the FizzBuzz
code in each example is read as an excerpt from a larger program, its con-
tents signal a set of rhetorical and computational decisions that have been
made about how to most effectively accomplish its task. In essence, Fizz-
Buzz communicates more, and other, than its output: it suggests to other
agents how the author has identified at least one central means around and
through which to compute relevant data and facilitate the desired result.
Further, it implies a suggestion as to how one should understand and
work with that data toward a perceived desired end.

case 2: quine

The second example to be discussed here is the quine, defined most con-
cisely as a “self-reproducing” program. In other words, the output of a
quine is the sum of its code content, meant to mirror that content per-
fectly. The term “quine” derives from the name of mid-twentieth-century
logician Willard Van Orman Quine, who provided the following self-
referential paradox: “‘Yields a falsehood when appended to its own quo-
tation’ yields a falsehood when appended to its own quotation” (Quine
1976). Quine meant that the statement provided can accurately be neither
true nor false, and it is only in the combination of concept and quoted con-
cept that the paradox’s meaning emerges. Rhetorically, the algorithmic
quine offers an opportunity for a rhetor to consider what it means to con-
struct a “logically sound” argument and how to communicate that logic
to a given audience. Is the argument merely an appealing effort at con-
structing or suggesting the construction of meaning, or is there an inter-
nally valid consistency to a quine? Does the former require the latter? How
transparent or opaque should its logical mechanisms be to the audience
so that it can recognize (or not) how the rhetor works to persuade it to ac-
tion? An algorithmic argument generates much of its appeal through its
consistent logic, although this consistency does not necessarily demand
any objective truth or accuracy to succeed.

One simple quine in code, written in the Ruby programming language,
is a single-line program provided in its entirety:

x = "x = %p; puts x %% x"; puts x % x
(“Quine” n.d.)

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  61

Within this line of code, there are two distinct operations that occur. The
first is to define the variable x, and its value consists of the characters
within the quotation marks; this operation ends at the second semico-
lon. In essence, x is defined as a data type called a “string,” a container
for some arbitrary set of alphanumeric characters (whose boundar-
ies are identified by the quotation marks preceding and following the
string’s content). The second operation in the quine, beginning directly
after that same semicolon, recalls and displays for the user the string’s
content exactly, via the puts function. It is important to note that this
second operation must include its own call as part of its output in order
for the quine program to be considered fully self-referential (i.e., the re-
call command itself has to appear in the output of the recall). When x
is defined in part as %p, %p serves as a container in which other content
might be substituted later; the statement puts x % x effectively in-
serts the content of x into itself so as to print out the quine’s input cor-
rectly. Many programmers separate the content of a quine into two com-
ponents, what they refer to as the “code” (the operations to be computed
when the program is run) and the “data” (the noncomputing replication
of those operations). This binary quality of the quine, for developers, al-
lows them to make explicit note of what “runs” (i.e., what computes)
and what is output (i.e., what is computed).

When we examine the code-based quine rhetorically, this distinction
changes as we turn from computational success to meaningful action as a
criterion of evaluation. The action of the quine’s code is to reveal its data
as procedure and output; the action of the data is to highlight the means
by which it was revealed, the computations constituting the code itself.
It is significant that the two components function reflexively rather than
the code unidirectionally working “on behalf of ” the data; the quine as
a whole is displayed as an apparently complete persuasive entity. That is,
because the quine outputs itself, “everything” is made clear to the user
who executes it. It is this relationship that Cayley (2002) referred to when
identifying code existing as both text and not-text (as objects of study);
the code and data components of a program are inherently interrelated,
but the reading of code as executable action and as meaningful language
are two different activities. For the quine, much of its effect—its demon-
stration of its “completeness”—is due to the appearance of the quine as
a transparent argument. In simple terms, this appearance suggests that
the quine does (only) what it says and it says (only) what it does, present-
ing the semblance of a computational chiasmus that is completed when the
input is ultimately displayed as output.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

62  •  rhetorical code studies

Revised Pages

The quine also implies, though, that it is a simple program that merely
presents a plainly stated message: its content. In a sense, this implication
is the perfect argument that could be made by a rhetor: the tools used to
make a case make up that case. Miller (2010b) has pointed out the com-
mon rhetorical tactic of self-denial as a way of playing down or otherwise
concealing the acknowledgment that a persuasive effort is currently tak-
ing place. A significant component of this tactic, she argued, is mimesis,
the idea that language has the potential to represent its subject so clearly
and faithfully that it need not (or cannot) deceive in its representation. As
a result, a rhetor must work not only to conceal his or her true intentions
in using language for a given purpose but also to conceal the fact that the
rhetor is concealing anything. This idea of language as apparently, but not
actually, mimetic is key to an understanding of the quine and what it can
achieve rhetorically (and, perhaps, reminiscent of the debate over techni-
cal communication as instrumental or humanistic; see Miller 1979; John-
son 1998; Moore 1999; Johnson 1999; and discussed further in Dubinsky
2004). It is not simply the sum of its parts (that is, its expression does not
only equal its content); it is a means of suggesting, in more general terms,
that all code can be reduced to such a description and that no further criti-
cal inquiry as to its purpose or mechanical procedure(s) is necessary.

One complication for the quine—and thus, by association, any execut-
able software program—is that it is possible to hide from audiences what
the true intentions and content of a code-based program may actually be.
Thompson (1984) demonstrated the ease with which a skilled developer
might circumvent the transparency of code composition and execution
by inserting instructions into a UNIX machine’s compiler software. The
compiler is an intermediary, a translation program whose function is
to transform source code (readable by humans) into an executable pro-
gram (readable by the machine). Thompson revealed that it was possible
to manipulate the code of a compiler in such a way that it would be un-
detectable to anyone using the compiler, along with any other programs the
compiler subsequently compiles, for other purposes—including the execution
of a quine. Thompson’s point was that one could trust only the code one
wrote: all else was potentially devious, even a program that purported to
print the entirety of its own code. Whenever one interacts with an external
entity (e.g., code written by another person), it may not only be difficult
to tell whether some meaning is concealed but it may be impossible to ver-
ify whether any concealment has ever occurred unless attention is drawn
thereto (cf. Miller 2010b). While the quine itself may not be to blame for

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  63

any malicious behavior on a compromised system, it is nonetheless reli-
ant upon the ecology of technological and human agents in which it ex-
ists in order for its computation and subsequent expression to occur
“successfully.”

The quine provides a valuable example of code as a text that is not sig-
nificant merely because it acts rhetorically through its expression—by
revealing its content—but also because it emphasizes the complicated
nature of code as a text-practice that does and says more than what it ex-
plicitly describes in its composition and expressed performance, in what
Chun (2011) has described as “a crafty, speculative manner in which mean-
ing and action are both created” (24). Just as with more conventional rhe-
torical activities that focus on meta-rhetorical subjects, the quine has the
potential to influence audiences to reconsider the communicative event
itself. In the case of the quine, this reconsideration results in an awareness
of the self-description as a necessarily enthymematic, rather than a fully
contained and transparent, argument. This argument calls attention to
the ability of code to do more than it suggests, especially when it suggests
that one has access to the code in its entirety, including the full functional-
ity of its expressive ability.

case 3: hashmap

The third example to be discussed transforms and deforms existing
texts—and conventional readings thereof—in order to bring to light new
meaning that might not have been exposed in the text’s original format.
This sort of code, and its paratextual output, is aligned closely with the
algorithmic criticism of literature promoted by Ramsay (2011) and oth-
ers. Here the example code is included not so much to demonstrate the
possibilities of code for literary criticism but instead to highlight how
algorithmic manipulations of text work to engage different audiences
rhetorically. This example was composed by Shiffman (2014) for, and to
be included with, the Processing integrated development environment
(IDE), which uses a streamlined syntax based on the Java programming
language. Shiffman’s code makes use of a type of data called a HashMap,
which serves as a way to store a “collection” of individual data elements so
that each has its own identifying key data. By default, the program takes
a plain text file with the contents of Mary Shelley’s Frankenstein and Bram
Stoker’s Dracula, the text for each novel made available through the elec-
tronic Project Gutenberg public domain library, and displays each word in
a particular font size related to the frequency of each word’s occurrence in

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

64  •  rhetorical code studies

Revised Pages

either novel. The program will not count a word if it appears in both novels
or if it appears fewer than five times. The novel’s words, reconfigured as a
HashMap (a kind of data table that stores paired “key” and “value” data),
offer in their recombined form a way to read meaning in each text, and
in comparison to the other text, based upon the frequency of particular
terms and concepts. Table 2.4 contains excerpts from Shiffman’s code,
which appears as an example project in two files (“HashMapClass.pde”
and “Word.pde”).

The program takes the contents of Dracula and Frankenstein and strips
out all punctuation so that only words (data “strings” of characters, re-
ferred to as hash map “keys”), and the spaces between them, remain.
Then each word is checked against the current contents of the HashMap

Table 2.4. Excerpted HashMap example code by Shiffman (2014) written for
Processing, from “HashMapClass.pde”

Line Code from “HashMapClass.pde” file in HashMapClass example (Shiffman 2014)

27 words = new HashMap<String, Word>();
[. . .] [. . . These lines create variables populated by the novels’ texts]
50 void loadFile(String filename) {
51 String[] lines = loadStrings(filename);
52 String allText = join(lines, " ").toLowerCase();
53 String[] tokens = splitTokens(allText, " ,.?!:;[]-\"'");
54
55 for (String s : tokens) {
56 // Is the word in the HashMap
57 if (words.containsKey(s)) {
[. . .] [. . . These lines locate the appropriate key and update its value]
68 }
69 else {
70 // Otherwise make a new word
71 Word w = new Word(s);
72 // And add to the HashMap put() takes two arguments, "key"

and "value"
73 // The key for us is the String and the value is the Word

object
74 words.put(s, w);
75 if (filename.contains("dracula")) {
76 w.incrementDracula();
77 } else if (filename.contains("frankenstein")) {
78 w.incrementFranken();
79 }
80 }
81 }
82 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  65

and, if it does not currently hold a position within the HashMap container,
is added thereto with a value of 1. If the word does already exist within the
HashMap, then the appropriate value for that word is increased by 1. Once
this check is completed, it is repeated for the next word in the novel, and
then the next, until the entire novel has been iteratively “read” in this fash-
ion. This activity—or at least an activity closely related to it—is described
as “text mining,” referring to the act of extracting meaningful data from
an otherwise opaque or unexamined source text.

As these word count checks occur, each word that has been computed
is written onto the screen at a random spot along the top with its incre-
menter value influencing the size of that word on the screen. Words that
occur more frequently in either novel are displayed in larger font size
and move down the screen more quickly, and only so many words are
displayed on the screen at any given time, even though the total calcula-
tion of the novels’ contents continues to execute. In other words, there is
a distinction between what the user and his or her machine experiences,
with the former engaged in a particular constrained reading of Dracula and
Frankenstein that is acutely distinct from Processing’s interpretation of the
data as solely important in its numerical sense.

There are several meaningful activities that occur within the lines of
the HashMap code that, together, dramatically alter the traditional con-
cept of reading and writing. Perhaps the most significant of these is the
incorporation of object-oriented programming (OOP) principles into
these activities. In OOP, distinct “objects”—clusters of expressive code
entities—are created from a framework of rules (called a “class”); each
instanced iteration of an object obeys the same procedural rules but re-
sponds to those rules independently of other object instances; that is, it
calculates and expresses its procedures without any inherent influence on
any other object, although this may occur incidentally. The result is a set
of objects whose behavior has the same fundamental principles but that
emerges uniquely for each individual based upon the constraints of its be-
ing called or created as part of a given program; in this example program,
each displayed word is a separate object. (As an aside, OOP is unrelated
to the philosophical subfield that has been named object-oriented ontol-
ogy for its focus on nonhuman entities.) What OOP allows for is the po-
tential for a multiplicity of contextual meaning made possible through the
expression of iterative object creation and activity emerging from an initial
set of algorithmic procedures.

At the same time, the nuanced context of each iteration of a given class

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

66  •  rhetorical code studies

Revised Pages

is slightly flattened as it is expressed within the constraints of a particu-
lar situation; for example, as the Word “Lucy” is counted by Shiffman’s
program, the meaning of each use of the name reference is stripped away.
There is no remaining distinction between when Lucy speaks, when she is
referred to by other characters, or what sort of emotional tenor surrounds
those utterances. Instead, the name, as a Word object defined by the code,
becomes notable primarily as a unique string of alphabetic characters that
repeats so many times over the course of the novel, represented visually
in contrast to other word strings by its expressed size on, and speed with
which it travels across, the screen. Lucy—along with any other word from
either novel transformed by this program—gains significance through
certain demonstrations of numerical frequency. Because of the way Shiff-
man coded his program, there are a few intriguing side effects of this shift
in significance (see figure 2.1).

Through the expression of Shiffman’s code, it becomes clear that the
most frequent words in Dracula (and, potentially, in most novels or other
substantial bodies of text) are words that might be considered the least
important: the conjunctions, articles, and prepositions that link together
more “significant” concepts and messages. It is possible to add into the
code exclusionary conditions that would ignore these seemingly trivial
words (often referred to as “stop” words), such as the single character “t”
in figure 2.2, likely a remnant from the splitting of words by punctuation
characters, outlined in line 53 of table 2.4; to support this theory, the word
“didn” appears below “t” at roughly the vertical midpoint of the figure,
nearly blending into “flies” to its right. Any subsequent analysis of word
prominence via frequency made while ignoring such words or word frag-
ments could be considered technically inaccurate or incomplete. Further,
the decision to reveal the computations of word frequency in this manner

Fig. 2.1. Example expres-
sion of Shiffman’s (2014)
HashMap code

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  67

results in a very different visible outcome than through some other ap-
proach, such as generating a text list of each word and its final frequency
count. Because only a subset of words from each novel appears on the
screen at any moment, the user ultimately is left unaware of the signifi-
cance of words that do not continually appear or that do so in a small font
size (see figure 2.2).

In figure 2.2, a screenshot taken at another moment during the same
expression of the code displayed in figure 2.1, there is a noticeable differ-
ence in the makeup of visible words. While the code continues to cycle
through the words in each novel, the user is only given access at any time
to a small set of the computational results. Words such as “mina,” “mur-
derer,” and “bag” (visible in figure 2.1) have all been repositioned beyond
the bounds of the program’s output window, obscuring the visualizations
of their frequency; but “harker” has cycled across the screen again at this
point, its position unintentionally captured at nearly the same vertical
point as in figure 2.1.

Why might a program seemingly so trivial—at least in terms of how
it presents a “reading” of Dracula and Frankenstein—be worthy of discus-
sion? The choices Shiffman made in creating this program signal to user
and to developer a particular set of values related to reading and (re)writ-
ing these novels algorithmically. Word-level elements of the novel are de-
formed contextually from their original meaning and given new context
through significance; the words that appear more often in the text appear
more prominent in the code’s expressive arrangement/layout. At the same
time, the way Shiffman has chosen to determine what defines a word
(based on the characters that might surround it) alerts other coders, and
the system expressing the code, as to how to arrange and read the text he or she
inputs. This is not simple instruction entirely devoid of persuasion: we are

Fig. 2.2. Later expression
of Shiffman’s (2014)
HashMap code

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

68  •  rhetorical code studies

Revised Pages

influenced to (more likely) accept a developer’s meaningful text making
by the symbolic action engaged in by all participants of the algorithm’s
construction, interpretation, and computation. As part of this action, we
may more effectively evaluate how successfully the author-developer and
the computer have been in generating and demonstrating this argument
for a new form of reading if we can understand how we are expected to
interpret that argument and read the created paratext in a particular way.

Conclusions

More generally, each of these examples discussed above serves to demon-
strate some fundamental qualities of code as a significant form of making
meaning rhetorically. While on its own each program may seem to serve
only a limited purpose, together the code functions provided in these ex-
amples work—alongside thousands of others used daily—in more robust
software programs to persuade and influence numerous human and tech-
nological audiences to act in rhetorically meaningful ways. These ways
may not always be visible, clearly recognizable, or discursive in nature,
but they nonetheless create meaning and work to persuade the human and
nonhuman audiences they engage to induce various types of change in the
ecologies in which they operate.

Further, the potential for meaningful symbolic action that is demon-
strated in these examples reflects the close connection that has existed
for millennia between algorithmic procedure and humanistic activity, in
terms of both creatively and critically oriented work alike. While the vast
majority of scholarly rhetorical focus has thus far centered on a variety
of communicative modes including writing, speaking, image, and even
place, the scholarship on procedure—and especially algorithmic procedure
demonstrated through digital and computational media—as means of
persuasion is relatively sparse. Rhetorical code studies, however, serves as
a space in which to tease out the rhetorical potential of algorithms, and
of software code as a particularly significant contemporary form of con-
structing algorithms, to facilitate action in audiences.

The following chapter demonstrates the potential of code to facilitate
action through an examination of the spheres of discourse surrounding
the composition of code in development communities. Exploring writ-
ten communication about code can provide a means of demonstrating the
rhetorical strategies used by programmers to develop and promote soft-
ware among certain populations (namely, other current and potential pro-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Rhetoric and the Algorithm  •  69

grammers). The values that developers stress in their code and discursive
commentary, in addition to the persuasive tactics they use to build particu-
lar types of identities and communities, highlight a set of qualities likely
to be communicated in and through the code they produce. Building on
this foundation, we will then turn to bodies of code texts to see how those
persuasive expectations—and the strategies believed to facilitate the real-
ization of those expectations—play out in a given development case.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

71

chapter 3

“I Have No Damn Idea Why This Is
So Convoluted”
Analyzing Arguments Surrounding Code

Decades of efforts have gone into helping civilians write code as they might
use a calculator or write an e-mail. Nothing yet has done away with developers,
developers, developers, developers.

–Paul Ford, “What Is Code?”

Despite the long-standing relationship that exists between algorithmic
procedure and humanistic activity, it has only been relatively recently that
rhetoricians have investigated how algorithms function rhetorically (and
how they are understood to do so) for computational and communicative
purposes. This set of qualities is key: while algorithmic procedures per-
form meaningfully, those who compose and execute such procedures may
not always recognize how those procedures serve them in a rhetorical
sense. Thus if we are ultimately to examine how code is a means of con-
structing meaning via algorithms, it is first necessary to investigate how
those involved in the development of software programs perceive algo-
rithms as rhetorically powerful. This particular investigation can best be
performed through the body of discursive communication written by pro-
grammers, professional and amateur alike, for other programmers about
how their code does or should operate.

Programming discourse assumes a prominent role in this chapter spe-
cifically because it is clearly rhetorical in the most conventional sense, in
that developers persuade one another to accept the choices each has made
in developing meaning through particular code texts. Each developer of-
ten takes a position where they must defend the rhetorical choices made
in composing a particular piece of the overall software program under dis-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

72  •  rhetorical code studies

Revised Pages

cussion, and the arguments made in that defense bring to light a num-
ber of values possessed by that developer regarding: the program and its
purpose(s); the language(s) upon which the program is built; the develop-
ment team and its goals; and even the broader perspective that the devel-
oper may possess about what is possible in code and how it can be made
possible within the constraints of that particular project.

There are several genres in which programmers predominantly com-
municate with explicitly rhetorical goals. Email (individual messages and
electronic mailing lists), discussion forum posts, and chat environments—
such as IRC and, more recently, Slack—provide opportunities for develop-
ers to engage in sustained synchronous and asynchronous conversation
with their peers about code: solving particular computational problems
or bugs, deliberating over preferred software and hardware architecture,
and even addressing perceived differences between developer and user
knowledge about a program and its use(s). More “official” documenta-
tion genres, provided as code comments and related files (e.g., “Readme”
text documents) outlining the intended purpose of a given program, of-
fer programmers a means of articulating a range of formal and informal
suggestions for how others adopting or modifying a given program’s code
should or should not approach doing so. Similarly, versioning systems
serve collaborators as arenas for deliberation on specific code texts’ rele-
vance to and strength or value in improving a particular program through
the acceptance or rejection of specific changes to its code base.

To begin investigating the role(s) of programmer discourse on rhetori-
cal communication in code, I relate discursive activity on code to tradi-
tional discourse studied by rhetoricians. The rhetorical qualities of such
communication can tell us a great deal about the considerations that de-
velopers weigh when it comes to discussing their work with collaborators
and other audiences. While this sort of discursive activity only partially
describes the range of meaning communicated by developers to develop-
ment audiences, it nonetheless demonstrates the kinds of meaning poten-
tially created and communicated in code as well.

Rhetorical Scholarship on Online Discourse Communities

Because much of the communication that occurs among software de-
velopers happens online or in networked electronic environments (e.g.,
within a given team, among departments within an organization, or
across geographically distributed communities), we can examine rhe-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  73

torically the bodies of texts composed for their diverse goals. Rhetorical
inquiry into the makeup and activity of online discourse communities
(formed by a wide variety of shared interests or qualities) has occurred
primarily through two major approaches. The first approach tends to
examine online communities as electronically transplanted iterations of
conventional communities, with their forums and email lists as sites for
gathering and exchange that are perceived to function as digital iterations
of historical agorae. When examined through this lens, digital environ-
ments are understood not necessarily to possess qualities unique or oth-
erwise distinct from those of more traditional communities or forms of
communication. Instead, groups communicating digitally are examined
as extensions of traditional discourse communities that employ different,
but historically relatable, media from their predecessors. The second ap-
proach to rhetorical inquiry into online communities involves exploring
those communities as fundamentally distinct from conventional groups
with similarly distinct means of (and preferences for) communication
among group members. In this approach, online communities are gen-
erally positioned as networks with unique qualities that would be impos-
sible to replicate—or otherwise have no clear or familiar analogue or prec-
edent—in nondigital environments.

While these two approaches differ significantly, they nonetheless are
similar in regards to the interactions on which they focus: the traditional
patterns of discursive communication between individuals within a given
community. Both approaches are complicated by the integration of code
into rhetorical examinations of online communities and particularly those
communities involved in the development of software, for whom code
is not merely a facilitator of discourse but a means of communication in
its own right. Should it be understood as an electronic transcription or
inscription of Boolean logic (which does not need digital technology to
operate in the most technical sense)? Or is it a form of communication
realized in full only through the capabilities of electronic, networked com-
puter systems? The likeliest answer is that it is both of these and more.

Admittedly, many of the studies that viewed online communities as
digital extensions of conventional communities are dated, with the major-
ity of such publications spanning the late 1990s or early 2000s. In part,
a number of scholars may have focused on conventional qualities of on-
line communities due to the limitations or unanticipated uses of Internet
spaces, such as Benson’s (1996) examination of Usenet groups’ digital
extension of political discourse or Silver’s (2005) discussion of electronic

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

74  •  rhetorical code studies

Revised Pages

shopping centers as town halls. Gurak (1997) provided an extensive ex-
amination of a variety of online community responses to two failed tech-
nological initiatives, Lotus Marketplace (a marketing database program)
and the Clipper chip (an encryption device to be overseen by the US gov-
ernment). Gurak’s analyses of online postings about these controversies
ultimately framed online discussions as hybrid forms of conventionally
recognizable speech or writing, possessing both the immediacy of speech
and the permanence of writing.

More recent studies qualified these earlier arguments in regards to the
specific attributes of electronic communication. Warnick (2007) high-
lighted the potential problems of access, literacy, and clear author iden-
tity surrounding digital technologies, each of which might hinder an
otherwise more complete online reconstruction or iteration of more con-
ventional public discourse. Hocks (2003) focused on the inherent mul-
timodality of digital environments in order to emphasize the distinction
between traditional rhetorical situations and the break from that tradition,
which she argued was taking place on the web. Kimme Hea (2007) ob-
served the difficulties that researchers must often navigate when studying
online communication, thanks in part to “the Web’s mutable nature; con-
tinued growth; and confluence of visual, aural, and hypertextual forms”
(270). Miller and Shepherd (2004, 2009) contended with the complexities
of studying genre and platform in an era of rapid technological advance-
ment and change. Shared among these scholars’ arguments is the senti-
ment that while there may be new contexts or ways of understanding how
online communication works that need to be incorporated into scholarly
consideration, there may also be productive continuations of convention
or tradition that should not be overlooked.

A number of scholars have advocated an alternative approach to the-
orizing online community rhetoric, one in which digital environments
and rhetorical situations are considered fundamentally distinct from
those surrounding conventional communities. For example, Brooke
(2009) called for a new media reconsideration of the rhetorical canons
and of the trivium of classical education, with a focus on how new me-
dia demand innovative rhetorical perspectives if we are to understand
how we communicate in ways unanticipated in previous contexts. Shirky
(2009) observed the contributions of self-organizing communities to
construct meaningful and dynamically shifting arguments through
projects like Wikipedia, whose developments can be traced through the
version histories of particular subject-oriented pages. Goodling (2015),

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  75

observing digital forums as a “new public sphere,” identified essential
qualities of online activism and engagement that were simply impos-
sible to achieve through other means, from real-time citizen journalism
to born-digital versions of civil resistance. Gallagher (2017) pointed to-
ward a growing need to attend to algorithmic agents as audiences for
digital and online communication.

The question that drives research relating to online communication as
different from conventional communication is: what, if anything, makes
such discourse unique or innovative? Answers to this question, whether
historically conventional or otherwise, are significant because they help
explain the potential range of (1) interactions among, (2) purposes of, and
(3) rhetorical means available to the members of various online communi-
ties. While these methods provide crucial insight into the ways communi-
ties’ members interact, there has been little scrutiny of how online com-
munities’ members make and share meaning with one another through
the code that makes up a significant part of their discursive interactions.
The ability to communicate in such ways is especially important for com-
munities whose shared interest is the software that their members work
on; these are groups who do not attempt to recreate conventional civic
communities but instead construct social networks influenced by devel-
opment processes. Accordingly, the meaningful communication their
members share through and about code is often provided in unique ways
that just as often do not approximate traditional forms of conversation or
deliberation. We can see the complexity of these means of communication
in an examination of communities dedicated to software development and
to the “meta-discourse” that surrounds their code, the types of commu-
nication that describe, deliberate upon, or propose compositions in code
related to particular software projects.

The Rhetorical and Social Makeup of Open Source Software
Development Communities

Software development communities, like any other broadly defined
groups, are widely varied in terms of overlapping interest, level of relevant
expertise or knowledge, and intensity of dedication or enthusiasm among
their members. Unsurprisingly, the computer-oriented identity of such
communities is likely to play a significant role in how those communities
construct themselves and in how their members interact. Specifically, the
uses of electronic technologies as spaces for collaboration, deliberation,

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

76  •  rhetorical code studies

Revised Pages

and socialization all influence the perspectives held by community mem-
bers regarding how to properly interact with one another.

This significance of technology as an influence on community makeup
and activity can be seen in the variety of potential demographics for a given
software development community. For example, any such group might ex-
ist because its members are all employees of the same corporation (e.g.,
Microsoft, Red Hat, Adobe) or because they belong to the same profes-
sional organization (e.g., World Wide Web Consortium, Open Source
Initiative, Association for Computing Machinery). It may exist because
its members are all professional developers, amateur or hobbyist devel-
opers, a mix of both, or its member base may include those interested in
but not necessarily involved in the development process. It may exist because
its members work within the same code language(s) or on software ap-
plications that assist with a specific variety of purposes. In many cases, the
existence of a given development community is temporary if not outright
ad hoc in nature. Further, its members are likely to be dispersed across
the world thanks to increasing access to high-speed telecommunications
technologies and infrastructures.

This fluidity is especially significant for communities focused on the
development of open source software (OSS), since the defining principle
of OSS is that the source code of a given program is distributed along-
side the compiled, executable software package so that other interested
parties can—if they so choose—modify and redistribute that source code
out again, and so on. Specifically, OSS theoretically enables the possibil-
ity for any individual so motivated to manipulate or alter a program as he
or she sees fit because public access to its code has been provided by its
developer(s). This access profoundly blurs the boundary between the
conventional labels of “producer” and “consumer” and opens up the po-
tential for a hybrid identity—what has been dubbed the prosumer (Ritzer
and Jurgenson 2010)—as both developer and user of a given software pro-
gram. Such a sense of access and productive capability is central to the
success of many OSS projects; many can count themselves as members
of communities that they might have otherwise been excluded from (or
considered themselves excluded from). For example, the website for the
Red Hat Fedora operating system’s community referred to its members
as “friends” that contribute, in different ways, to the operating system’s
success (Red Hat 2017). Because of this shift in perception, the dynamics
of those communities—and thus the ways their members communicate—
change dramatically; the variety of purposes members have for participat-
ing therein increases, including whether members choose to participate

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  77

through improving on the program’s code or discussing ways in which it
might be improved.

As a result, what makes many software development communities
stand out from other types of social groups is this dual focus on the po-
tential to create meaningful software through code contributions and to
deliberate about how “best” (often individually qualified) to improve upon
existing efforts to create that meaningful software. In effect, members of
such development communities can attempt to communicate with each
other in two distinct ways: first, in what they code (i.e., how the code com-
municates its intended purposes and abilities), and, second, in what they
explain to one another about what they perceive their code to say and do
or what they perceive their code to have the potential to do. This is not to
suggest that all community members will engage in all possible forms of
communication but instead to observe how rhetorical activity could occur;
it is likely that those who may not feel comfortable exploring code may
also not engage in its discussion explicitly, relying instead on secondary
points of focus in order to stay involved. These points may include con-
cerns about the user experience of a program or about the social culture
that may surround its use.

It is also worth observing that these communities do not exist in so-
cial or cultural vacuums and neither should they be implicitly understood
to reflect the full diversity of a population. According to a GitHub (2017)
survey of roughly six thousand contributors to OSS projects, 95 percent of
respondents were men, while 3 percent were women and 1 percent identi-
fied as non-binary (n.p.). The same survey revealed that 26 percent were
immigrants “to and from anywhere in the world,” and 16 percent were
an ethnic or national minority in their country (GitHub 2017, n.p.). Seven
percent of respondents to the GitHub survey identified as “lesbian, gay,
bisexual, asexual or another minority sexual orientation” and 1 percent
were transgender, with this last group making up 9 percent of the respon-
dent group of women contributing to OSS projects (2017, n.p.). Clearly,
there are certain backgrounds and experiences that, as the survey has sug-
gested, are more likely to be represented than others in OSS development,
and their influences can frequently be recognized not only by scholars but
also by other developers and users as well.

Common Structures of OSS Development Communities

For more than twenty years, OSS has gained ground in the software mar-
ket as an alternative model to the traditional system of proprietary pro-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

78  •  rhetorical code studies

Revised Pages

duction and distribution. The defining qualities of OSS include free access
to source code and communal development and improvement of software
programs, “free” meaning unlimited or unhindered, but in many cases
also referring to a lack of financial cost; “libre” has also been used for the
former meaning so as to distinguish it from the latter. Individuals pos-
sess the legal right and, for some, the knowledge to experiment with and
make adjustments to OSS program code. In addition, users are often en-
couraged to distribute the modified code back out to the general populace
so that it can be further modified and distributed in new iterations of the
program, theoretically ad infinitum. Among the most notable OSS projects
include the Linux operating system (of which dozens of distinct distribu-
tions exist, including Red Hat’s Fedora, Debian, Slackware, Ubuntu, and
Gentoo), the Mozilla Firefox web browser, and the Apache web server.
While these few programs listed here are among the most well-known
OSS projects, their popularity nonetheless demonstrates a widespread use
of OSS programs; this suggests in turn a growing popular interest in OSS
development.

Despite a significant increase in OSS use and development since the
early 1990s, it would be misleading to claim that OSS is inherently or
even radically different in terms of development structure than its tradi-
tional proprietary counterpart. That is, in both paradigms, there is gener-
ally a community of dedicated developers working on an active software
program and a community of nondeveloper users that may or may not
contribute suggestions for improvement (such as through bug reports
or requests for features). Where OSS tends to differ from proprietary de-
velopment is that there is often some overlap between “developer” and
“user” (i.e., the prosumer role, cf. Ritzer and Jurgenson 2010), both in
the amount of contributed aid provided by developers or users and the
amount of perceived importance of any community member.

In many OSS communities, a hierarchy of development contribution
value has been established wherein certain developers possess significant
influence over a given project and the vast majority of end-users hold very
little (Christley and Madey 2007). A number of studies have attempted to
understand the social dynamics of OSS development communities and
any hierarchical structures constructed by those communities (Crowston
et al. 2005; Crowston and Howison 2005, 2006; Wiggins, Howison, and
Crowston 2008). These studies, however, generally suggest that a clear
organizational structure, rather than a dynamic and chaotic environment,
has been demonstrated to be the most effective means of ensuring project

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  79

success. In fact, Crowston and Howison (2006) suggested that the opti-
mal structure of an OSS development community “is onion-shaped, with
distinct roles for developers, leaders, and users” (114). This onion has at
its center the primary source of social power and influence, made up of
the project founder(s) and the release maintainer(s). The further from the
center each layer is, the less influential and less actively involved in the di-
rection and improvement of the project it is, with the outermost layer con-
sisting of those passive users who do not contribute at all.

While Crowston and Howison’s onion metaphor is helpful in describ-
ing the general hierarchies constructed for a given software project, it
obscures the dynamic movement that can occur across these layers and
privileges (or responsibilities). For example, an individual overseeing a
significant section of an OSS project might be near the center of the onion
of that section, but that individual may be less central to the development
of another major section of the project or to development of the project
as a whole. As a result, it may well be more useful to think of the onion as
having intersecting, Venn diagram–like networked links that cross at mul-
tiple node points, rather than layers that engulf others.

rhetorical influences on oss development
social structures

If an OSS community can be conceived of as a complex onion structure
with intersecting and hierarchical layers, then how can we comprehend
the rhetorical activity that occurs throughout it? How generalizable are
such observations regarding communities with different social dynamics?
This is admittedly a difficult act of inquiry to engage in, given the fluid
nature of many OSS groups; the “onion” metaphor used by Crowston and
Howison (2006) applies to a particular moment in time and is employed
for their use in regard to a specific perspective (i.e., the overall develop-
ment of a project). Unfortunately, the onion metaphor fails to take into
account the continued meaningful communication that occurs among de-
velopers as they work to influence one another on the specific contribu-
tions they offer to part or all of the community, just as it describes only a
subset of the makeup of software development communities and work-
flows that they engage in, OSS and otherwise.

That said, the onion metaphor can be incredibly useful when it comes
to emphasizing the strata of valued roles and contributions to a project;
like the translucent quality of any individual onion layer, the impact of in-
dividual contributions on a given project or its development community

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

80  •  rhetorical code studies

Revised Pages

can be seen by looking “through” or “across” the project’s layers (e.g.,
its social circles or the functional capacities of its code). By describing
the structure of an OSS community via the metaphor of an onion and its
many layers, Crowston and Howison (2006) suggest both that there is an
inherent structure (with organizational power increasing as one moves to-
ward more inner layers) and that all the layers are similar. This suggested
similarity is significant for a generalized understanding of OSS projects:
even those who may not feel as though they are offering any substantial
contribution to a particular program—or who may not be perceived to
contribute in a substantive manner—are nonetheless often provided with
the message that any and all contributions are worthwhile. Problems with
collaboration and its seeming egalitarian nature have been identified by
scholars for the past several decades, even as they ultimately stressed the
benefit of such work (McNenny and Roen 1992).

Not surprisingly, the potential for rhetorically effective communi-
cation among the members of a given community is greatly affected by
the structure of that community. The organizational metaphor of an OSS
community as an onion, whether envisioned with isolated or intersecting
layers, suggests that there are increasing levels of social significance and
celebrity as one moves toward its center (with outer layers orbiting the in-
ner layers), as these qualities are—theoretically if not actually—both more
valued by that community. In this sense, the community appears to func-
tion like a more traditional discourse community or social entity, such as
having one or more central figures (e.g., a president) make large-scale ex-
ecutive pronouncements that affect the entire community, while individu-
als in less powerful positions appeal to community leaders or intermedi-
aries for change.

But—as has been noted by numerous rhetoricians from Gurak (1997)
to Moxley (2008)—electronic technologies have complicated the influ-
ence and persuasive power of a community’s various members, and the
diverse needs of a community may catalyze intriguing intersections of
members that the onion metaphor does not accurately address. Often,
this complication exists as a form of hierarchical flattening. For example,
since email can be sent to anyone else (or an entire organization) with an
email address, one’s apparent ability to persuade directly has been radi-
cally increased: anyone can voice his or her concerns and desires to the
population at large. A community’s members gain the potential to engage
social and organizational spheres (if not the entire community) in ways
they might not traditionally have had. With any number of motivations,

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  81

such as a need to maintain enthusiasm among developers (or possible de-
velopers) in order to keep a volunteer-maintained project active, as well as
a desire to communicate information about specific individual or group
activities in order to coordinate specific or overall project functionality,
many OSS communities seem to be composed less of discrete “onion” lay-
ers than of complex intersections of spheres of influence, only some of
which may be hierarchical; even then, the hierarchy may be temporary as
often as it is permanent.

Among the OSS development communities that have been notably af-
fected by the “flattening” and other complicating qualities of electronic
technologies upon discursive practices is Red Hat’s Fedora Project. Their
website described the Fedora Linux OS as a program built by a commu-
nity that stresses a close relationship among its members: “The Fedora
community includes thousands of individuals with different views and
approaches, but together we share some common values. We call these
the ‘Four Foundations’: Freedom, Friends, Features, and First” (Red Hat
2017, emphasis added). Even though the vast majority of users may be un-
likely to engage in direct development of the operating system, and even
though the vast majority of those may never be considered for any sort of
social leadership position, there is nonetheless an explicit appeal to friend-
ship made on behalf of the community. By centering on friendship as a key
descriptor of its social makeup, Fedora is able to position all of its con-
tributors as laterally situated developers rather than as members of a verti-
cal hierarchy. But is this claim—or others like it—supported by practice?
Does it resemble OSS dynamics, broadly speaking? That is, do contribu-
tors to an OSS project actually possess such a bond with their colleagues,
or is it a marketing tool meant to entice more potential developers into the
project community?

Admittedly, it is incredibly difficult, if not outright impossible, to pre-
dict precisely how any given OSS development community determines the
social standing of its members. In many cases, developers solicit contri-
butions from popular (user) audiences as a means of generating interest
in continued improvement upon given programs, with the implicit mes-
sage that contributing anything not only affords a person entry into a valu-
able community but also affords status therein. For the example of Fedora
and its community of “friends,” it’s not only important that people use Fe-
dora, but that they perceive their relationship with other contributors in a
particular way so as to collaborate more effectively on the project. Further,
this relationship is explicitly recognized and endorsed by the overseers

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

82  •  rhetorical code studies

Revised Pages

of the project itself, since it is purposefully advertised as one of the core
strengths of the Fedora project.

Of course, it is rare that any OSS project articulates how it rates or oth-
erwise evaluates its members in any regard other than the merit of each
individual’s contributions to the project. After all, arguably any other cri-
terion would suggest that development itself is not the most significant or
central reason for development-related recruitment. “Development” as a
broad descriptor of activity, however, has increasingly been described in
more inclusive terms in order to bring in a wider range of potential con-
tributors who may not necessarily be interested in writing code. For exam-
ple, the development community for GIMP, the GNU Image Manipulation
Program, has provided on its website a list of different ways that inter-
ested parties could involve themselves in contributing to the program, in-
cluding “program[ming] new features[, . . .] writ[ing] tutorials[, . . . and]
help[ing] others to learn to use GIMP” (GIMP 2018). Clearly, not all the
proposed contributions demand the same skills or time of its developers
(or even attract the same individuals), and coding itself is considered only
one aspect of a larger set of valuable activities related to the project. By
casting a wide net over its community in terms of solicited contribution
activities, the GIMP community is able to engage users that might other-
wise have never considered themselves capable of involving themselves
in GIMP’s development process, such as those without programming
knowledge or those uninterested in writing code for GIMP.

But the existence of inclusive calls like those from the GIMP develop-
ment community is not necessarily a reflection of a generally inclusive
mindset. That is, not all contributions are viewed equally by all developers
in all communities. Given the semihierarchical nature of many projects
(whether onion-like in makeup or not), it is much more likely that par-
ticular contributions—and particular types of contributions—are generally
valued more highly than others (Stewart 2005). Often, those who possess
or who are perceived to possess the most code-related experience on a proj-
ect are likely to be in positions to influence the largest populations of com-
munity members, usually due to the “direct” influence of writing code on
the project; new (or revised) code has a clear and immediately functional
impact on use of the program. Linus Torvalds, the inventor of Linux, is a
particularly prominent example of this contribution mindset and the para-
dox it can create: his previous contributions to numerous versions of the
operating system’s code has enabled him to retain a semiofficial role as
“benevolent dictator” of Linux kernel development from its outset even

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  83

though he is not currently the most prolific or dedicated programmer as-
sociated with the project (Ingo 2006). In fact, in one recent interview, Tor-
valds noted that he no longer reads code but instead merely evaluates the
proposed changes that his collaborators bring to him based on their own
evaluations of the code submitted by others (Moody 2012).

Effectively, Torvalds directs the main development of Linux via his es-
tablishment of a throng of “lieutenants” likely to promote code that seems
to work in alignment with his vision for the operating system and to reject
code that does not. When those outside his trusted circle propose changes
to the Linux code, especially changes that may not align closely with Tor-
valds’ philosophy on what Linux should do, Torvalds has been known to
react passionately, sometimes due more to the mode of submission for a
proposed contribution than to the merits of the contribution’s code con-
tent (with one such example discussed in more detail later in this chapter).
In other words, Torvalds can significantly influence the trajectory of Linux
development due to the ethos he has built over two decades from his pro-
gramming work on the operating system. His current “indirect” involve-
ment in the project, however, can still overshadow the direct contributions
of others who lack strong enough community standing to have an equal
voice in the conversation. As a result, code and coding knowledge clearly
matters, but it does so as a component of a more complex system of so-
cial influence in which other community members’ perception of one’s
knowledge also plays an important role.

In other projects, positions of authority and leadership may be deter-
mined in a wide variety of methods. In some communities, leadership
roles may be passed from one individual to another in appointed suc-
cession or by selection of the “upper management” circles of a develop-
ment effort. Still others, like the community for the Debian distribution of
Linux, elect an overall “project leader” through the use of a popular vote
in which all interested developers can participate (Debian 2011). In the
case of Debian, nominees highlighted the work they felt best suited them
for the position of project leader, and each nominee’s perception of sig-
nificant or valued work is often substantially different from that of others
(which, of course, suggests a number of different potential directions that
the overall project might go). As a result, at each election the community
is provided with an opportunity to consider multiple potential directions
of the Debian project, some of which might otherwise never have been
considered or discussed at length or at all.

While there are many development communities that have similar gen-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

84  •  rhetorical code studies

Revised Pages

eral structures and philosophies—and in some cases shared members—
each is ultimately unique in its social makeup and project mission. The
specific goals that drive development activities in relation to one proj-
ect are not uniformly possessed by, or valued in, another project. Stew-
art (2005) observed that social status in OSS development communities
was driven in large part by communicative efforts as much as by any po-
tentially “objective” or empirical evaluation of merit (e.g., the consistent
demonstration of writing code concisely, for computational efficiency, or
in some other manner valued by a community). Stewart noted that avail-
able social references—which may or may not have correlated with ex-
plicit knowledge of others’ skill at programming—informed much of the
determination of specific developers’ social standings among their peers
and colleagues. In fact, those parties interested in social status who estab-
lished themselves quickly in a community—as willing to participate in de-
velopment activities and able to accomplish desired development tasks—
were more likely to be afforded a higher social standing than those who
contributed at a slower pace after their initial interactions with that com-
munity (Stewart 2005). Development activity and success is thus impacted
significantly by kairos, a grasp of time, place, circumstance, and audience
that enables a rhetor to effect change.

Indeed, kairos is an integral component of social capital, an individual’s
capacity to contribute significantly and meaningfully to a particular com-
munity, Those who recognize and make use of opportunities to position
themselves as valuable are often those who ultimately gain some sense
of authority over the community’s central project, even if their long-term
contributions do not end up as central or powerful as those of the more
low-key or “latent” contributors considered to be less important to the
overall community. These other contributors may, depending upon the
nature of the project, spin off or “fork” their modifications to a different,
albeit related, project where they can gain the social standing or authority
over the program that they lacked in the original community. That is, we
may view a given act as kairotically both successful and unsuccessful for
the impacted communities (the existing initial project and the newly cre-
ated fork project).

According to Nakakoji, Yamada, and Giaccardi (2005), the group-
oriented goals of each development community are the adhesives that
maintain connections between members and other projects. Just as it can
be impossible to determine how long a given project might survive (be-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  85

cause of changes in market demand due to perceived need thereof or the
amount of competing projects that exist), it can also be incredibly difficult
to determine how long that project’s developers will remain active within
the project community. As Abdullah et al. (2009) noted, the nature of OSS
development relies on voluntary collaboration with little incentive beyond
individual desires to improve the project under development. Howison,
Inoue, and Crowston (2006) stated that the makeup and mission of a proj-
ect is less likely to change at its center than at its periphery; the overall
range and makeup of participants—and thus the range of motivations
involved in community participation—can be quite dynamic and varied.
Some developers may contribute in order to improve a given program,
while others may contribute because that program impacts use (or devel-
opment) of a related program, while still others may contribute because
the program is central to their employment-related activities and thus pro-
gram development facilitates those other activities.

This motivational force is in line with the concepts of both kairos and
rhetorical agency: parties involved in a particular rhetorical event possess
a temporal and situational energy that facilitates their engagement with
one another (Miller 2007). Agency, understood as this energy, extends in
the context of software development to describe the meaningful and rhe-
torical action of large- and small-scale program development (i.e., con-
tributing broadly to the development of a program and specifically to the
development of one or more features or components thereof). In many
cases, relevant rhetorical motivation is successful specifically because
it imitates in various ways the energy of a productive business environ-
ment. That is, the model of a development community is often understood
most clearly as a kind of corporate or commercial operation, regardless
of whether that community is actively pursuing a profitable outcome for
their activities or is organized remotely like a business. Ballentine (2009)
has discussed the complications involved in opening or obscuring source
code in order for a project to compete in particular types of markets as
well as in regards to how such decisions affect subsequent work in those
markets. That is, developers may—consciously or otherwise—contribute
to a project as much to package and distribute the relevant product for in-
dustrial ends (e.g., profit, market dominance, industrial prestige) as they
do to collaborate or to promote OSS principles. This is due in many cases
to OSS “volunteers” working on specific projects because, as noted above,
those projects are valuable to the volunteers or their employers. In some of

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

86  •  rhetorical code studies

Revised Pages

these cases employers provide a set number of compensated hours each
week for those employees to work on OSS projects that might have some
direct or indirect benefit to the employer organization.

OSS development is thus an incredibly powerful tool for corporate
and proprietary purposes; O’Reilly (2005) has noted that many services
built on OSS frameworks, such as Amazon and Google, are not required
to share the applications they have developed because those services are
simply used by consumers as black boxes rather than distributed to them
as standalone programs. That is, it is possible—and often profitable—to
build fences and walls around the “free” software supposedly accessible to
any interested party. The agency of OSS freedom communicated to would-
be developers can also be co-opted into closed source, proprietary agency
denied to any parties not explicitly involved with those corporations.

In other words, the rhetorical power generated by OSS communities
through common OSS collaboration and distribution models is, in many
circumstances, also sapped or circumvented by proprietary competitors’
ability to outmaneuver it for specific business-oriented ends. For OSS
communities to function most effectively in achieving various forms of
success—e.g., a sustainable funding model, a robust population of volun-
teer developers, widespread usage of the program under development—
the rhetorical awareness of their members to engage one another in pro-
ductive and collaborative communication is necessary. But it is not always
clear what options any individual member has, what sort of choice that
member makes about how to engage others, or why that member makes
a given choice. Further, the kind of meaning communicated—whether
in regard to individual or shared community goals—is similarly and fre-
quently obscured. It is precisely in this obscurity, however, that we have an
opportunity to gain significant knowledge about the means by which de-
velopers engage in rhetorical meaning making with one another and with
other audiences. In this way, we gain access to understanding about how
programmers work rhetorically, not only in their discourse about code but
through their code as well.

Common Rhetorical Aims of OSS Developers and Communities

While each OSS community has its own unique set of goals, many indi-
vidual aims overlap, sometimes significantly, with those of other com-
munities, even if those aims are not explicitly communicated in a com-
munity’s governing or design documents. Perhaps the most universally

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  87

shared goal is one of continued existence: most developers connected to a
project hope for that project’s development to continue indefinitely, even
if they are not associated with the project indefinitely. Accordingly, acces-
sible information about the project’s mission and details about valued
forms of contribution are often necessities for volunteer-staffed projects,
as individuals may have less dedication to those efforts that provide little
tangible benefit or social cachet.

This general goal, however, does not fully articulate the diversity of
purposes toward which various individual and collective members of a
development community operate. For some, there is a desire to steer the
development of a program in a certain direction, such as to conform to
a community’s “best practices” or to facilitate one’s own vision. Others
may demonstrate their programming skills in order to bolster their repu-
tation or to find employment. Others still may simply want to experiment
with code or particular functionalities and share the products of their ex-
perimentation with their colleagues and others. Even this list is not ex-
haustive, but it serves as a starting point for investigation; in the following
pages, I explore brief examples of rhetorical efforts relating to these goals
so as to illuminate directions for future relevant research.

Perhaps the most commonly shared goal, as noted above, is the in-
creased distribution and use of a particular OSS program. But there are
also developers who are uninterested in promoting a program to broader
communities or in ever relinquishing control over the program’s devel-
opment trajectory. Given that the success of many OSS projects is reliant
upon a regular stream of new participants to replace inactive contributors,
though, it should not be surprising that “survival” becomes a driving fac-
tor. In almost all cases, the appeal to survival and prosperity is intertwined
with developers’ attention to kairos. The Mozilla Firefox browser—which
will be explored in greater detail in the following chapter—has prospered
in large part because it emerged as the successor to an already popular and
influential browser (Netscape Navigator) and because it was perceived as
a functionally and aesthetically preferable alternative to Internet Explorer,
the default browser packaged with Microsoft Windows. Hundreds of de-
velopers flocked to the Mozilla project because of some discontent with
IE. For some, it was the lack of cross-platform support for IE (meaning
that only Windows users could use the browser). For others it was a desire
to promote open, rather than proprietary, web standards so that web de-
velopment would not risk being locked into IE-related development. But
the development of Mozilla—like that of many other OSS projects—has

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

88  •  rhetorical code studies

Revised Pages

not been without rhetorical tension, often centered on the standardization
of code texts within the frame of an individual organization or project.

standardization practices, kairos, and community uptake

Many OSS developer goals are relatively nuanced and less ubiquitous
than those of large-scale institutions, with individual motivations and
stylistic approaches to code impacting the work activities in which pro-
grammers engage themselves. Some developers seek to align their code
practices with individual project style guidelines (and, in some cases, in
adjusting those guidelines to more closely resemble existing individual
code practices). This sort of effort can improve code readability across files
as a move toward consistent style and logic helps readers learn to expect
particular approaches to problem solving and the like. Such an effort can,
however, also potentially inhibit other developers’ contributions if those
others do not follow the project’s guidelines. Alternatively, standardiza-
tion efforts may rework contributions to effectively remove the individual
character of its author from the file, making each OSS contribution an ef-
fort to balance the preferences and needs of the community with the pref-
erences and abilities of the individual contributor.

Concerns of standardization and normalization are key to a critical
and rhetorical understanding of code. That is, the processes by which al-
gorithms are composed to conform to particular operational paradigms
(often referred to as “standardization” or “optimization”) for computa-
tional efficiency, as well as for developer readability, can tell us a great deal
about the values a given community has regarding its product(s) and the
functions thereof. This is not to suggest that there are no circumstances
in which particular operations or functional patterns are objectively su-
perior means of achieving particular goals. Instead, I call attention to the
persuasive influence of the computational and rhetorical methods by which
developers pursue those goals and by which they deliberate their work.
Just as scholars including Bogost (2007), Brown (2015), and Beck (2016)
have explored procedural rhetoric relating to computational systems and
algorithmic logic, so too can we consider here the discourse surrounding
procedural composition, discourse ultimately meant to facilitate action as
described through those procedures.

One such discussion took place among França et al. (2012) in regards
to a proposed change to Ruby on Rails (often referred to simply as Rails),
a popular OSS web application framework (examples of well-known
Rails-based sites include Twitter, Groupon, and Hulu); it works as a ser-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  89

vice that makes use of the Ruby programming language to deliver content
to users. Rails builds on a three-part structure of “models,” “views,” and
“controllers” that serve to describe different rhetorical functions of the
data being manipulated. Briefly, models describe data objects in a gen-
eral or ideal (Platonic) sense, views render them into the output accessed
by users, and controllers deliver data requests to the proper destination
so that views can be rendered properly. While there are hundreds of con-
tributors to Rails, there is a smaller core team of established developers
who collectively decide on the future of the project. One member of that
team, França, in 2012 submitted a relatively brief proposal to add a “sym-
bol,” a special type of object in the Ruby language on which Rails runs,
to a small portion of the Rails code. The overwhelming response to this
proposed change was that the symbol addition was unnecessary and thus
worked against the goals of the project. Several developers questioned
the purpose of the code: “Why is this a module? I see it being included
a single place [. . .] I’d imagine it’s not designed to be used anywhere
else, so why bother?” (França et al. 2012), Another contributor asked, “Is
there an actual problem this code is solving?” (França et al. 2012). Yet an-
other contributor argued, “I think this is a horrible addition to the router
that doesn’t appear to be actually solving a problem, as well as poor code”
(França et al. 2012). França himself did not enter the comment discussion
on the merit of his code proposal, leaving his colleagues unclear as to the
intended purpose of his submission, even if the end result may have dif-
fered from that intent. França’s contribution thus clashed with the set of
practices that had been established and supported by the majority of vocal
contributors to Rails, and his colleagues seemed to be in consensus that it
was ultimately not a worthwhile addition to the project.

But David H. Hansson—the initial developer of Rails and a “benevo-
lent dictator” over the project with the ability to overrule the decisions of
even the core team—ultimately decided to accept França’s proposed code.
In his support for the proposal, Hansson noted, “I find [the proposal] to
be a wonderful addition to the domain language and a key building block
for making beautiful Rails applications. So we will spread that beauty far
and wide” (França et al. 2012). In essence, Hansson accepted the proposal
not because the community decided it was the best approach but instead
because he felt that it served the community well. The remaining discus-
sion hinged on the soundness of Hansson’s decision, focused primarily
on whether Hansson’s own preferences for Rails code style may or may
not have aligned with the stylistic preferences and goals of the majority

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

90  •  rhetorical code studies

Revised Pages

of Rails developers. Even though França initially appeared to be unsuc-
cessful in his contributory attempt, his goals in constructing the code as he
did were aligned closely enough to Hansson’s goals—and Hansson’s per-
sonal views on the goals of the larger Rails community he oversees—to re-
sult in an acceptance of França’s proposal. The interests of the Rails devel-
opment community as perceived by Hansson and França differed from those
articulated by other members of the community, but the code change was
accepted regardless of those differences. In other words, the persuasive
power of França’s code was demonstrably stronger to the right audience than
its apparent functionality, at least to the general Rails community at the
time of its initial submission. The “normalization” involved in commu-
nity acceptance of França’s proposal came not from revision relating to
its computational efficiency or apparent appropriateness, but from Hans-
son’s top-down endorsement of its integration into Rails code.

Similarly, standardization efforts by some institutional or project-
specific authorities have clashed with individual contributors when idio-
syncrasies or preferences to write “unprofessional” code (as defined by
those in charge of the project) might potentially work against the goals of
the establishment. For example, in early 1998, during the hours before the
code for Netscape Navigator (now Mozilla Firefox) was publicly released,
there was a push by Netscape’s lawyers to “sanitize” the program’s code
and relevant comments so the texts would appear family-friendly rather
than potentially vulgar or obscene. As Jamie Zawinski, a former employee
for Mosaic Communication Corporation, noted,

Largely this [sanitation activity] consisted of making sure we had the
legal rights to all the code we were releasing, and making sure every
file had proper and accurate copyright statements; but they also made
us take out all the dirty words. Specifically, “any text containing vulgar or
offensive words or expressions; any text that might be slanderous or libelous to
individuals and/or institutions.” (Zawinski 2004)

For Zawinski and many others who had contributed to the early releases
of Netscape Navigator, the act of sanitation—interpreted by lawyers to
be a legal necessity—was one of erasure that removed the character of
Netscape-related development from the published texts. Yes, there was a
tremendous amount of profanity in the comment lines, but for Zawinski
and his collaborators, that profanity was an important component of their
programming efforts, as well as being an accurate depiction of the frustra-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  91

tion that often accompanied development activities. For his part, Zawinski
published, in 2004, a partial archive of commented lines that had been re-
moved from the first public release of Netscape Navigator (see table 3.1).

None of the comments are particularly heinous, and other than the oc-
casional comment targeting a specific individual (“Lou”) or group (“mar-
keting”), most of the obscenities are focused on problems with how par-
ticular lines or blocks of code function, usually in unexpected ways. Given,
however, that Netscape was in a position to have its initial public release
of code scrutinized heavily by the public, or at least by individuals outside
of the corporate and social structure of the Netscape team, a particular
presentation of the company and “releasable code” influenced a move
toward standardization of otherwise internal discourse to become a pub-
licly palatable set of texts. That is, complaints about Netscape’s code in
comment lines may have been perceived (whether by the legal team or in
anticipation of public audiences) as metonymic critiques of the browser
itself rather than, perhaps, as cathartic expressions of temporary anger or
disagreements between individual developers. In any case, the comments
were intercepted by Netscape’s lawyers in order to circumvent any such
potential interpretation.

If Netscape had never released the browser’s code to the public,
would it still potentially be laden with profanities? Are profanities gener-
ally offloaded to other discursive channels? It is difficult to say, and the

Table 3.1. Example comments sanitized from Netscape Navigator 4.x (1998)

File Name Sanitized Comment(s)

ns/include/xp_mcom.h /* this sucks, should I really include
this here or what? *?

ns/lib/layout/edtbuf.
cpp

// LTNOTE: what the fuck. This crashes

sometimes??
// we are fucked! try something
different.

ns/cmd/macfe/central/
profile.cp

// * I have no damn idea why this is so

convoluted
// BULLSHIT ALERT: Get out if I can’t
call GetSharedLibrary.

ns/cmd/xfe/src/
PersonalToolbar.cpp

// crap from marketing

ns/cmd/winfe/display.
cpp

/* check if Lou is a pindick */

ns/cmd/winfe/woohoo.
cpp

return NULL; //The list file did not
exist!!!! Bastards!

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

92  •  rhetorical code studies

Revised Pages

black boxes of proprietary code may cause one to wonder whether most
software to which the public has no access might appear to be reflections
of community character, ideology, value, and so on. Some supporters of
OSS projects champion the self-policing nature of OSS communities, with
“problematic” individuals being ostracized or outright removed from a
given project. But such arguments assume that all readers support similar
means of evaluating whether or not a given situation should be dealt with.
In the case of Netscape, the company’s legal team overrode the implicit
values of the programming team to show off, rather than hide, the labor—
frustrations and all—that went into the development of the browser.

self-promotion and experimentation

Some individuals involve themselves in OSS development projects either
to hone or show off their coding skills, putting their contributions be-
fore the community in order to learn from, or have their work validated
by, their peers. This is not to suggest that individuals with such goals are
necessarily working against the general aims of the larger community,
but instead to observe that there are many different reasons for partici-
pating in such communities. For example, numerous code contributions
have undergone review for—and, theoretically, eventual merging into—
the central production of the Mozilla Firefox browser over the past twenty
years. The details of the review process for Firefox is elaborated upon in
the next chapter due in part to its hierarchically complex nature, but in
brief, Firefox is maintained across several software versioning systems
and makes use of multiple programming languages (C++ and JavaScript),
each of which has its own established set(s) of development standards
and practices.

Among the most noteworthy contribution reviews for Firefox is due
to its author’s request that it be neither merged nor denied since, he ar-
gued, it was “only for review purposes. There is no intention of landing
this change” (Gozala et al. 2012). In other words, Gozala utilized the col-
laborative nature of peer review on his code primarily as a way to improve
his broader code abilities by bringing his efforts to the attention of his fel-
low developers. The comments provided by other users followed through
in this regard, focusing on the understandable and readable nature (or
rather the lack thereof) of the submitted code (Gozala et al. 2012). One
commenter suggested that Gozala could improve the readability of his
code by providing more illustrative examples to explain his intent; Gozala
responded by suggesting the commenter “just read docs [documenta-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  93

tion], putting too much examples [sic] is not that useful” (2012). The com-
menter replied again after more code submissions:

So, inch by inch, this is getting closer to the quality required for
mozilla-central. Even if we omit our core disagreement on how to im-
plement result, [sic] there is still work to do. Unfortunately, by now, I
am just too tired to continue pulling you kicking and screaming to that
level of quality. (Gozala et al. 2012)

In essence, the development community almost unanimously stressed
a particular route through which the author could alter his work in re-
gards to the project, offering feedback that could extend to code efforts
beyond the scope of the Firefox browser. At no time did the community
suggest that Gozala stop contributing but instead deliberated on how he
might best accommodate the larger population of involved developers by
improving upon his code and communication skills. While Gozala often
pushed back against these suggestions, the rhetorical considerations of
his contributions were more and more acutely weighed until he turned
to revise his code thoroughly. Even though the specific proposals under
consideration have yet to be fully approved or denied, Gozala’s awareness
of how his code works outside of its mechanical operations—that is, how
other coders view and value it—has only improved, in turn increasing his
chances of being valued more generally as a programmer regardless of his
place within the Firefox community.

The beneficial results of collaboration have been explored by a num-
ber of scholars, especially in regards to writing in digital environments.
Moxley (2008) observed the positive effects of crowdsourcing as a way of
creating and evaluating public knowledge: the “wisdom of crowds” can
influence the instructional capacity and engagement of a community far
beyond the ability of an individual to do so, thanks to the communal shar-
ing and evaluating of information (183). While the ethos of every individ-
ual member may not ever be fully confirmed or investigated, the crowd as a
mass entity likely can and will norm itself to ensure that the most accurate
and helpful information is disseminated to its members. A related con-
cept is the programming maxim often referred to as “Linus’ Law,” named
after Linus Torvalds, which shares this sentiment: “given enough eyeballs,
all bugs are shallow” (Raymond 2000). In other words, the number of in-
dividuals scrutinizing and editing a particular text—whether conventional
or code—is proportional to the text’s overall strength and accuracy as it is

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

94  •  rhetorical code studies

Revised Pages

revised by its editors, although it has been observed that in practice, many
bugs are overlooked or otherwise unidentified (Kerner 2015).

evaluation of contributions and contributors

While communities like Firefox leverage their hierarchical structures into
educational opportunities for aspiring developers, other development
communities have chosen to focus, or at least emphasize, their efforts on
establishing an equal playing field—or at least the perception thereof—for
the projects on which their members work. Others stress the purportedly
meritocratic, and thus beneficial, makeup of their community structures;
for example, Kelty (2008) discussed Wikipedia’s commitment to meritoc-
racy as a response to systems in which background or professional posi-
tion can influence one’s community standing (345–46). Such efforts can
promote a more inclusive and inviting atmosphere for contributors who
might otherwise be hesitant or resistant to participating, since in-depth
knowledge of code can often appear to be a substantial barrier to entry
into a particular development community. This sort of appeal is especially
intriguing in that it does not necessarily reflect the actual dynamics of a
group but attempts to persuade individuals that advertised egalitarianism
is the norm.

The Apache Software Foundation (ASF) is a developer organization
formed to support the development of the Apache web server, and its offi-
cial website documentation highlights the meritocratic nature of Apache-
related development. The ASF positions itself not only as a meritocratic
community that recognizes the value of its contributors, but as an exception
to the social character of other software development groups. On a web
page outlining how the ASF works, the following described the founda-
tion’s self-perception of its meritocratic leaning: “[U]nlike in other situ-
ations where power is a scarce and conservative resource, in the apache
[sic] group newcomers were seen as volunteers that wanted to help, rather
than people that wanted to steal a position” (Apache Software Foundation
2012). Simply put, the ASF claimed to have prospered because it viewed
social “power” as a nonprecious “resource,” meaning that theoretically
any and all volunteers could join in to help as desired. This freedom to
participate, however, is restricted, as noted in that same document: while
the ASF “was happy to have new people coming in and help, they were
only filtering the people that they believed committed enough for the task
and matched the human attitudes required to work well with others, espe-
cially in disagreement” (Apache Software Foundation 2012). Only a select

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  95

few were granted permission to alter the production code directly, those
that “had ‘earned’ the merit to be part of the development community”
(Apache Software Foundation 2012). In other words, the ASF self-policed
by supporting those individuals its members felt were “committed enough
for the task” as opposed to those who might contribute in a more casual or
occasional fashion, and only those with social authority were considered
to be part of the community. It was thus not enough that individuals might
want to help but that they demonstrated a desire and ability to focus on the
contributions they made to Apache, whether through frequency, amount,
or quality. The meritocratic ASF community is actually a set of communi-
ties, including those who are viewed as having earned a prominent place
and those who have not yet earned such a place.

These brief examples begin to demonstrate how particular individu-
als and groups may attempt to rhetorically position their work for various
audiences and purposes. The goals and their discussions provided above
will be compared below with developers’ rhetorically aware appeals to de-
termine how frequently such efforts are explicitly employed to achieve a
given end versus appeals that implicitly suggest code as the sole focus of
deliberation.

Developers’ Rhetorical Awareness of Their Coding Practices

While it is certainly possible to discuss developers’ rhetorical practices
regardless of their explicit awareness of those practices, we can gain an
even greater understanding of how they choose to communicate with one
another by looking at the extent to which they do recognize the rhetori-
cal qualities of the appeals they make to one another. While rhetoricians
would rightly argue that any decisions made as part of development ac-
tivities are fundamentally rhetorical in nature, examining rhetorical self-
awareness here is important as it allows us to scrutinize the intentional
practices of invention in which developers participate in order to engage
in the composition of software programs.

In some cases, direct connections between rhetoric and code practices
are explicitly drawn by developers. Ford (2005) has identified rhetorical
goals at the heart of his work, using the idea of coding elegance to help drive
the simplest and most flexible way to achieve one’s goals. Ford specifically
compared the development philosophy behind the Processing language
with that of the web, and he asked web developers to consider the princi-
ples behind their work: “Is the browser the right way to navigate the Web?

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

96  •  rhetorical code studies

Revised Pages

[. . .] Why are some semantic constructs more privileged than others?
[. . .] How can content truly be reused?” (84–85). Ford (2005, 2015) also
appeared to recognize implicitly the rhetorical qualities of interfaces and
code alike as ways of understanding more effectively the history and activ-
ity of software development.

Ford’s (2005) final question, which suggested a kind of rhetorical
oscillation, is integral to code practices in that it emphasizes the suasive
nature of effective code and communication: “What is sprezzatura for the
Web?” (2005, 91). Sprezzatura refers to one’s ability to make a difficult act
appear as though its execution were effortless, what Castiglione (1988) de-
scribed as “a certain nonchalance which conceals all artistry and makes
whatever one says and does seem uncontrived and effortless” (67). Ford’s
question effectively highlights concerns of rhetorical style and delivery:
How can the effective and successful construction of code—which itself
might appear to be not much work—make software development and use
easier and more accessible for all? In essence, the rhetorical value of user
and coder goals should influence development practices rather than be
considered only in retrospect as a quality not inherent in software creation
or use.

In a critique of general software practices, Platt (2007) argued that
many code decisions stem from considerations of convenience for a de-
veloper rather than from some objectively superior or “best” quality con-
nected to those decisions. In other words, many developers lack the rhe-
torical awareness required for a successful engagement with one’s user
base or audience. As part of a description of the “Do you want to save the
changes?” dialog box that appears when a user attempts to exit Micro-
soft Notepad without saving the file he or she has been working on, Platt
(2007) observed that

[t]he programmer wrote the program this way (copy the document
from disk to memory, make changes on the memory copy, and write it
back to disk) because that was easier for her [. . .] Reading or writing
characters from the disk (spinning iron platters with moveable parts)
is roughly a thousand times slower than doing it in memory (electrons
moving at the speed of light)[.] (17)

Despite the increase in speed and machine efficiency gained as a result of
the programmer’s decision, Platt’s argument suggests that the program’s

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  97

functionality works poorly here because any “successful” use of Notepad
demands an understanding of how the programmer intended the pro-
gram to work. That is, the dialog box’s question only makes sense if the
user recognizes that files are not saved to disk by default: the programmer
is “forcing [the user] to understand that she’s written the program this
way” (2007, 17). It is important to note that while the approach provided
by Platt is mechanically faster than the alternative, the decision to use either
is fundamentally rhetorical in that the workload-related interests of the
programmer—reduced code-based program preparation via defaulting to
memory (RAM) storage rather than disk storage—are ultimately chosen
over the diverse interests or needs of the user, which might very well in-
clude or assume automatic saving of data to the hard disk.

While developers may not always, or even often, draw attention to sua-
sive strategies that do not focus solely or primarily on code, when they do,
those strategies can provide rhetoricians with tremendous insight into
those developers’ aims and how they attempt to induce their colleagues
to action. A programmer may not frequently make explicit reference to the
language of rhetoric (e.g., almost no one will outright mention ethos or
chiasmus in their comments) but they might mention their credibility (e.g.,
their experience with a project or the code languages used in it) or per-
sonal emotional investment regarding a particular issue. When developers
lean on fundamental rhetorical appeals in these ways, the ends to which
they work and their perceived relationships with other developers or their
projects become visible in intriguing ways for scholars and professional
practitioners interested in relevant communication practices. In addition,
these rhetorical activities can enlighten us as to the ends to which particu-
lar code texts and paradigms are constructed and promoted as well as to
how they might be received by various audiences.

Rhetorical Appeals Used in Community Discussions

Developers’ use of specific rhetorical appeals and strategies to convince
developer audiences to act varies between individuals. There is no funda-
mental difference between using the basic appeals of ethos, logos, and
pathos as part of either a code-based or a more discursive effort at con-
structing meaning, although the types of constraints for each mode of
communication may sometimes be distinguished easily from those of the
other. Further, it should not be suggested that these fundamental appeals

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

98  •  rhetorical code studies

Revised Pages

are the only means by which one might approach code and relevant dis-
course in order to identify rhetorical activity, but they serve as a productive
starting point to engage code-related communication.

Perhaps unsurprisingly, many programmers ultimately argue for code
practices that hinge on concerns outside of the code itself, such as when
well-known developers stress their social position in a given community
as valid support for community-related claims. Developers’ recognition of
their rhetorical efforts is important here, since the ways they construct and
present their arguments can be as insightful about their values on coding
as is information in the code texts about which they deliberate.

ethos

Among the appeals used relatively explicitly in development communities
is that of ethos, which is used not only in its classical sense to demon-
strate the credibility or expertise of a particular individual but also to “le-
gitimize” the project to (or from) which a particular set of contributions
are made. Several rhetoricians have explored the distinctions between tra-
ditional appeals to ethos and complicated contemporary appeals to ethos
that are less clear-cut. Miller (2001) has suggested that ethos is central to
electronic communication because humans need to be able to evaluate
their discursive companions, whom they may or may not know well or at
all: “what sort of character is behind the words: one we can trust? one we
can learn from? one who is like us or one who is strange and challenging?
one we can dominate or one who will seek to dominate us?” (273). These
concerns, while not always easily answered, nonetheless fuel much of an
audience’s determinations of a particular rhetorical effort. Warnick (2004)
argued that web communication, precisely because it is often so difficult
to discern the author of a text, let alone the author’s character, demands
a consideration of ethos focused more on the performance of credibility
through the presentation of pertinent information than the expertise of a
clearly defined author.

These concerns over the relationship between conventional forms of
ethos and newer means of demonstrating ethos are debated in many com-
munities. For example, headius et al. (2012) discussed code proposals for
a number of security tests related to the code suite distributed with the
Ruby programming language. This proposed code had initially been de-
veloped for a fork of Ruby modified to run inside the Java Virtual Machine,
and which thus could work alongside the Java language; this fork was
called JRuby due to its hybrid nature. The JRuby community’s members

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  99

felt it had the potential to benefit the broader Ruby development commu-
nity and offered to merge it into the main Ruby project, but only as long
as its origin in JRuby remained clear: they “would like to contribute these
tests, but [JRuby’s developers] would ideally not lose the JRuby bug num-
bers for future reference” (headius et al. 2012). Since the project was still
“in process,” the bugs that JRuby developers might continue to find, when
identified by numbers according to their existing maintenance scheme,
could make fixing those bugs easier.

headius’s offer was thus contingent upon the community’s willingness
to recognize the authority of the JRuby community for its contributions.
Not surprisingly, this appeal was met with some resistance by Ruby devel-
opers, who had their own maintenance preferences. One individual who
noted his appreciation for the code asked in response to the request for
JRuby’s bug references to remain in the code, “I’m confused, I was think-
ing I could simply strip those references when committing it to [the main
Ruby project], or not?” (Scott et al. 2012). Here, the ethos of the JRuby
community clashes with the ethos of the project itself (regarding whether
it was worthy of being included in the main Ruby project), bringing to the
spotlight the differences between the values of each community.

A counterexample to the JRuby case above can be found in a discussion
related to how scalable vector graphics (SVG) image files are implemented
through jQuery, a popular JavaScript library that enables event handling
and animations on web pages. One developer noted that it was impossible
to hide SVG images in the Mozilla Firefox browser and offered a potential
fix to that problem; subsequent discussion focused on whether it was—or
should be—the goal of the jQuery community to resolve problems that
they identified as being more relevant to other communities. As one re-
spondent noted, “this seems like a lot of work to support something we
don’t support,” while another likened the proposed solution to a can of
worms (Sherov et al. 2012). The “can of worms” perspective appeared to
anticipate other potentially unrelated issues that, should this first prob-
lem be considered seriously, the community might then feel obligated to
support or address. Almost unanimously, the development community
determined that work related to this issue was not within the purview of
their collaboration. The only real point of disagreement reflected the lack
of clarity as to who should take care of this issue: was it Firefox’s domain
or that of other JavaScript libraries? No consensus has formed in answer
to these questions, in part because no individual has assumed a position
of authority to definitively mark out that territory as belonging to jQuery

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

100  •  rhetorical code studies

Revised Pages

or another group, or even to “formally” assign that work to another group
that may similarly distance itself from the issue. Nonetheless, the com-
munity’s demonstration that their boundaries exist is significant. Here the
developer’s ethos can be as much about understanding the limits of indi-
vidual and group authority and expertise as much as understanding when
to emphasize the strengths of those qualities.

pathos

Perhaps unsurprisingly, developers who are dedicated to the projects
they work on often find themselves balancing their discussions between
(1) technical and logical reasoning and (2) passion for the work they
contribute to their projects. While it is rare to see a discussion in which
emotional appeals serve as the primary initial means of promoting par-
ticular perspectives, pathos nonetheless remains a critically important
strategy through which individual developers can stress the strength or
intensity of their convictions—or at least the convictions they perceive
their audiences to feel strongly about—in relation to a particular point
or as support for their appeals to ethos. Fahnestock (2011) has observed
this relationship between ethos and pathos as they relate to stylistics:
“[a]ttitudes and bids for alignment are encoded in every language
choice, and the rhetor’s presence and relation with an audience are the
unerasable ground of all discourse” (279). For discussions surround-
ing code, these language choices are especially important since they are
meant to reflect the emotional response not just to an individual com-
ment but to the code under discussion as well.

One particularly noteworthy conversation revolved around a request
for code to be merged into the general Linux kernel through the code-
sharing website GitHub, which makes use of a software versioning sys-
tem, a means of tracking software changes across a distributed popula-
tion, named git. This request required approval from Linus Torvalds, the
“benevolent dictator” of Linux development and initial developer of the
software versioning program git. What made this particular request no-
table is that Torvalds adamantly refused to address any code submitted to
him through the GitHub site. He argued:

Git comes with a nice pull-request generation module, but github in-
stead decided to replace it with their own totally inferior version. As a
result, I consider github useless for these kinds of things. It’s fine for

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  101

hosting, [sic] but the pull requests and the online commit editing,
are just pure garbage. (WNeZRoS et al. 2012)

According to the hierarchy of the Linux development community, Tor-
valds’ decision was appropriate and authoritative; his stressing that
GitHub was “pure garbage” provided an emotionally powerful articula-
tion of his reasoning. As many others observed, however, the proposed
code change was three lines long, a trivial amount of code to absorb into the
project. The change would in no way require any substantial effort on the
part of Torvalds, or of any other developer with the appropriate authority,
to accept the code into the project. As a result, Torvalds’ argument stands
out due to the intensity of his conviction against GitHub as a system for
software administration despite the absurdity of his immediate rejection
of such a brief amount of code.

Torvalds responded to these criticisms of his stance further in the
thread, and his claims were supported by the continued metaphor of waste
as a description of how GitHub works (presumably, in contrast to git it-
self). Specifically, he noted that

the reason for that is that the way the github web interface work [sic],
those commits are invariably pure crap. Commits done on github in-
variably have totally unreadable descriptions, because the github com-
mit making thing doesn’t do *any* [sic] of the simplest things that the
kernel people expect from a commit message[.] (WNeZRoS et al. 2012)

While Torvalds expounded upon why he felt GitHub failed as a version
control system on top of git, his equating the website with “garbage” or
“pure crap” remains the most compelling appeal for his position in that
it reflected his purpose in rejecting the submission; Torvalds exercised
his ability to critique GitHub and its supporters. The emotional tenor of
Torvalds’ argument was further exposed in another of his comments, re-
sponding to a developer who disagreed with his stance: “The fact that I
have higher standards then makes [sic] people like you make snarky com-
ments, thinking that you are cool. You’re a moron” (WNeZRoS et al. 2012).
Further discussion on GitHub’s implementation of git’s code merge re-
quest capabilities revolved around the stylistic preferences for their use
held by each participant in the conversation. Few comments were dedi-
cated to logical argument about GitHub’s use of git; most of these cen-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

102  •  rhetorical code studies

Revised Pages

tered on the “objectively best” practice that would benefit not only Linux
development but all software development hosted by GitHub.

Ultimately, WNeZRoS’s proposed code was never implemented
through his GitHub submission, but Torvalds’ pathetic arguments clarified
for many developers how continued community work on the Linux kernel
would likely progress from that point forward. As many recognized, the
rational merit of Torvalds’ argument was not any more important or cen-
tral to the project than Torvalds’ personal opinion. As Garsten (2006) has
noted, emotion, and especially passion, can “stimulate reflection or judg-
ment by disrupting ordinary habits of response” (196). The Linux kernel
development community was obligated to accept Torvalds’ complaints as
a normal component of community discussion in order to continue “work
as normal” through the GitHub versioning system. But since his com-
plaints directly addressed that system, an inordinate amount of discus-
sion focused on whether or not Torvalds’ criticism was rationally accurate
rather than whether the code proposal merited a merge into the main code
repository. As Torvalds had the final say in how the community’s develop-
ment practices were structured and executed, his position was essentially
impervious to colleagues’ criticism, leaving him free to offer arguments
that allowed him to share the emotions that fueled his perspective.

Just as there is no universally agreed-upon “best practice” for coding
in a particular language or even on a specific project, neither is there any
consensus on the most appropriate means of presenting an argument for
a particular community. The kairotic qualities of a coding situation influ-
ence each developer and audience in unique ways, and the appeals used
by a developer to effect change in his or her audience highlight that de-
veloper’s understanding of the relationship he or she has with the project
under discussion.

Nontraditional Rhetorical Activities Surrounding Code

Online forums and email lists are among the most popular, discursive,
and accessible forms of communication among developers in addition
to code comments, versioning commit descriptions, and other “code-
adjacent” texts. These forms of communication, which both make use of
code texts and noncode discussion, offer substantial insight into the rhe-
torical concerns that drive software development with particular goals in
mind. In some cases, the goal is to reinvigorate a project by splitting its
community and the authority that guides the project’s trajectory; in oth-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  103

ers, the goal is to merge individual experiments with, or to improve upon,
the established product. No matter the goal or the means by which a de-
veloper takes action, there is a fundamentally rhetorical component that
influences both the developer and his or her audience to participate in fur-
ther development and meaningful communication about the code being
composed for a given project.

forking

The concept of forking contributes significantly to the ebb and flow of many
development community life cycles (and especially to OSS community life
cycles), and it does so in fundamentally rhetorical ways. A fork is a cloned
version of a project that has become distinct from its originator project
at a particular point in time, and there may or may not be code or devel-
opers shared between original and forked projects from that point for-
ward. Well-known OSS forks include Ubuntu, a fork of the Debian Linux
OS; LibreOffice, a fork of the OpenOffice suite; and WebKit, a fork of the
KHTML web browser framework (WebKit powers the Google Chrome and
Apple Safari web browsers). A fork may be created for one of any number
of reasons, such as an individual’s desiring to tinker with a program out-
side the project’s regular work flow or development trajectory. In other sit-
uations, the fork may have been created because of a philosophical schism
between several developers that made further collaboration impossible.
Despite this relatively pessimistic example, Howison (2006) has argued
that in most cases, even when projects may have regular forking events oc-
cur, there are often efforts by the forking developers to make available im-
provements for the original program as well as for their own forked ver-
sions. This is likely because continued intercommunal goodwill increases
the chances of other developers contributing back to the fork in kind.

Despite its technological focus, forking bears a close resemblance to
the back-and-forth of conversation. As ideas are circulated within a dis-
course community, they are tested, supported, refuted, and mutated as
different individuals choose to address them. Sometimes, requests for re-
sponses are clearly indicated, such as when a developer comments in code
on “hacking” a workable but nonpreferred solution to a problem, unable
to come up with a stronger case until a colleague suggests one. At other
times, responses are provided but not solicited once a program’s code
is “published” alongside the program itself. Burke (1973) provided what
remains one of the greatest descriptions of discursive activity, comparing
knowledge creation as deliberation in a social setting:

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

104  •  rhetorical code studies

Revised Pages

Imagine that you enter a parlor. You come late. When you arrive, others
have long preceded you, and they are engaged in a heated discussion,
a discussion too heated for them to pause and tell you exactly what it
is about. In fact, the discussion had already begun long before any of
them got there, so that no one present is qualified to retrace for you all
the steps that had gone before. You listen for a while, until you decide
that you have caught the tenor of the argument; then you put in your
oar. Someone answers; you answer him; another comes to your de-
fense; another aligns himself against you, to either the embarrassment
or gratification of your opponent, depending upon the quality of your
ally’s assistance. However, the discussion is interminable. The hour
grows late, you must depart. And you do depart, with the discussion
still vigorously in progress. (110–11)

For Burke and for many rhetoricians since, this metaphor of the parlor
reflects academic and civic discourse: our understanding of a topic is ad-
vanced only through its public (social) “testing” of merit, reception, and
so on. Contributors to the discussion—individual scholars or citizens—
add their voices when they can, but the discussion continues, and often
changes, long after each departs from it. The same is true of software
development: forking serves as a means of “testing” a set of ideas by al-
lowing motivated individuals to explore alternatives to an original devel-
opment plan. The strength of a particular argument (i.e., development
philosophy) then ultimately is determined by the success of a particu-
lar fork as accepted and taken up by a given community. While it is the
project’s development philosophy that propels its creation, a fork might
prosper as much from the kairotic solicitation of aid and use—that is, es-
tablishing a solid user and developer base—as from the computational
strength and efficiency of the program’s code base.

The practice of open source software distribution and access could it-
self be viewed as a kind of rhetorical imitation: At what point does the use
of another developer’s code blur into the substance of a subsequent devel-
oper’s work? The use of someone else’s efforts as a foundation for one’s
own, in a programming sense, often has more in common with rhetorical
topoi than with academic plagiarism (although this is also certainly within
the scope of discussion). As Miller (2000) observed, “[t]he topos is concep-
tual space without fully specified or specifiable contents; it is a region of
productive uncertainty [. . .] [I]t is a space, or a located perspective, from
[sic] which one searches” (141). Topoi are useful to assist a rhetor in con-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  105

structing a particular argument by revealing and generating paths for that
rhetor’s expression from the potential lines of reasoning he or she could
pursue. In regards to software developers, for a particular method or func-
tion to be used effectively or to be perceived as being used effectively—
that is, to accomplish a specific task—it is expected to be constructed and
used in a certain manner, following the general style and conventions of
a specific development community, so that other developers can build off
of that construction. Forking, which makes use of a pre-existing form of a
given project in order to facilitate inventive activity, thus reflects the ability
of a rhetor to make use of a particular topos for his or her immediate and
situated purposes.

In some cases, a forked version of a project may ultimately be merged
back into its originating project or code base. As with forking, this adjust-
ment in a project’s existence reflects a dynamic shift in the social makeup
of the development community. A fork may have been intended to exist
temporarily, such as to experiment with a single feature whose capabili-
ties may not have been fully tested as part of the “production” version of a
program. Conversely, a fork may have been created with the intent for it to
be separated entirely from its originator as a distinct project in perpetuity.
But just as arguments and ideas are sometimes folded back into certain
lines of inquiry and discourse, so too are software forks often absorbed
back into the familiar development structure and community from which
they had initially split. This potential for merging is just as significant as
the potential for forking; if an OSS development community truly is dy-
namic and constantly changing, then a split (fork) cannot ever be consid-
ered permanent, just as the makeup of that community cannot ever be con-
sidered to be stable.

Forking is also noteworthy in that it functions as a dynamic counter to
the static metaphor of community-as-onion described earlier in this chap-
ter. When forking is considered as a potential avenue for any individual
developer looking to adjust his or her position within (or relationship to)
a given community, the possibilities for social and rhetorical readjust-
ment and orientation are expanded. Even though many forked projects’
developers contribute to their originator projects, there is no inherent
obligation for them to do so. The tenor of the development conversa-
tion changes when a given community gains or loses focus in regards to
a given perspective; given that this shift in focus is constantly occurring, a
consideration of development as a trajectory of forking and merging paths
is appropriate.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

106  •  rhetorical code studies

Revised Pages

pushing and pulling

Many software versioning systems, like git, make use of a two-pronged
form of code sharing called pushing and pulling that together resemble
nothing so much as deliberation in regards to the social construction of
knowledge and action. The dichotomy between pushing and pulling is
much like that of rhetorical action in a broad sense, which Garsten (2006)
has described as

prone to two forms of corruption. [. . .] In our desire to change [the
minds of an audience] lies the danger of manipulating, and in the ef-
fort to attend to their existing opinions lies the risk of pandering. The
two vices thus arise from the dual character of persuasion itself, which
consists partly in ruling and partly in following. (2)

In other words, a successful attempt at suasion occurs when there is a
well-navigated, optimally ethical, path balanced between overt manipula-
tion of or pandering to an audience. Miller (2010a) directly compared this
dichotomy with what she called the “push-pull model of technological
development” in which innovation draws audiences, while elsewhere the
lack of innovation spurs others in new directions (ix). For collaborative
software projects, this comparison is obviously apt and especially valu-
able. The means by which a balance between manipulation and pandering
is perceived to be attained, however, may vary wildly between communi-
ties. The potential interactions that may take place through code-related
pushing and pulling, described below, simultaneously draw attention to,
and obscure, rhetorical negotiations on inducing developer audiences to
accept and improve upon particular code-related decisions and influence
the direction of a given development community.

Pushing works for code distribution in a versioning environment much
like a classical oration: it is disseminated from an authoritative figure,
such as a core development team for a particular software program, to any
and all interested parties, like those who may potentially become involved
developers. As new versions of a program are released, whether with ma-
jor or minor improvements or revisions, the development team pushes the
code to a tracked repository from which any other developer may employ
that code for their own use. In other words, pushing works as a kind of
one-way broadcast transmission of a message that is both computational
and rhetorical. Just as it provides updates to executable code, so too does

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  107

it suggest that the decisions made to construct that code reflect the goals
and values of the development team. Implicitly, there is, accompanying
the code itself, an argument that any code that other developers want to
have included in future releases of that program should work and look like
the code being distributed, an achievement complicated by the inherently dy-
namic nature of continually developing code practices.

In contrast, pulling serves as a relatively passive acceptance of a rhe-
torical effort, an audience-oriented evaluation of the code being pushed
out to its broad user population. (The employment of pushed code as de-
scribed above is a kind of pulling.) Garsten (2006) referred to this sort of
approach (in a general sense) as “pandering” in that it demands of the
rhetor-developer an orientation that downplays the rhetor’s contribu-
tions in favor of the audience’s expectations. That is, individual users, at
least for OSS projects, have the ability to modify and freely redistribute (or
fork) the code for a given program. What they usually lack is the size of the
audience of the original or “mainstream” version of the program, which
means that their work on the project is likely to be overlooked. Many soft-
ware versioning systems provide a workaround for this, allowing users
to make pull requests to the core development team. A pull request effec-
tively works as a plea to merge together the individual user’s code changes
with the mainstream code base (some of the examples provided earlier in
this chapter centered on pull requests and the justifications for their ac-
ceptance). This process provides a voice to the individual by giving him
or her the opportunity to demonstrate to a community the rhetorical and
computational power of a proposed code change. At the same time, if and
when the code is merged, whether immediately or following further revi-
sion, the identity of its author is partly erased; the code content becomes
a part of the main program and, barring any specifically added comments
to identify its creator, the code is no longer distinguishable from the other
lines of code surrounding it or other files accompanying it. Given the hi-
erarchical structures that constitute many OSS communities, a developer
may need to construct his or her code in such a way as to appeal not only
to the needs of the user base but to the stylistic and logical preferences of
the project’s authorities. The pull request serves to highlight the “vanish-
ing act” that often occurs through successful rhetorical appeal: the user is
assimilated into the project’s body of work and activity.

Ignoring pushed updates is a possibility as well, and this action pro-
motes a unique rhetorical approach to communication and collaboration.
As discussed earlier in regards to forking, the idea of one or more develop-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

108  •  rhetorical code studies

Revised Pages

ers “breaking off ” from an established community works directly against
the political and rhetorical dynamics of a “top-down” model by providing
an autonomous identity to the motivated developer, at least until a new
community emerges around the forked program. After that, there may
be a new (or recurring) model of hierarchical structure that influences
subsequent innovation in regards to that fork, and the “pushmi-pullyu
dynamic” of rhetorical and technological appeals is reactivated, “leading
us to engage in or to attempt certain kinds of rhetorical actions” (Miller,
2010a, x). This potential for a reinvention of existing social and rhetorical
systems raises an interesting question for rhetoricians: How does forking,
and its subsequent further forking via voluntary updates or voluntary ig-
noring of updates, promote engagement within a complex rhetorical ecol-
ogy? It appears both to emphasize the audience’s ability to choose its own
individual voice(s) and to eschew the discursive potential of an established
project by iterating deliberation through fragmented productions of dif-
ferentiated programs. These varied forks are unlikely, in most circum-
stances, to have their code interwoven into others’ forks after establishing
themselves as separate and distinct projects, and this ultimately provides
an intriguing, and possibly unique, model of rhetorical appeal through
the avoidance of direct conversation.

patching

Other than forking and collaborative versioning, perhaps the most “so-
cial” practice of software development is patching, where small fixes to spe-
cific code issues are applied to existing software programs. Patches serve
as a sort of continued discourse between parties (developer and client) as
security bugs are fixed, hardware functionality is updated, and so on; of-
ten the exigence for a patch stems from explicit communication from a
user of the software, requesting improvement in some regard. Patches are
often highly kairotic in that they are developed quickly by individual pro-
grammers who spot and attempt to fix code exploits on their own instal-
lation of a given program, which are then perhaps distributed out to the
broader community of users for that program. Platt (2007) highlighted
one traditional weakness of this practice: patches “work only if you use
them, and almost nobody does of his own accord” (85). That is, software
patches are generally only applied voluntarily when a particular client
notes some problem with his or her program and seeks out a potential
fix to that problem. In recent years, this issue has been mitigated by au-
tomated updates that in many cases are partially or fully “invisible” to the

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  109

end user: Microsoft Updates and Ubuntu Update Manager, for example,
each regularly check for patches and then prompt users to update relevant
programs, either individually or as a “batch.”

While this increased automation makes implementing official patches
easier, there is an issue of relevant control, not unlike the issue with Mi-
crosoft Notepad addressed by Platt earlier in this chapter. In one sense,
code concerns become a nonissue as users are directed to merely apply
the regularly provided updates from developers. In another sense, though,
code concerns become a central issue, as there is no demand for, or expec-
tation of, users to examine proposed updates on their own and determine
whether or not to apply those patches. While there may be users who do
approach automated updates with caution, the system assumes users will
simply follow the suggestions of the update management software and its
assumed authority in distributing only patches that have passed testing.
With manually applied patches, there is an expectation that a user recog-
nizes a particular issue and actively seeks a resolution to it. There are two
significant possibilities arising from this approach. First, the user may
simply not recognize other issues to fix and may leave his or her software
open to other vulnerabilities (although, in a sense, all software is open to
unacknowledged or undiscovered vulnerabilities). Second, the user could
specifically avoid patches that he or she feels are unnecessary to apply.
This second possibility is important in that the user, while not unilaterally
protecting his or her software to the same degree, is capable of controlling
the “bloat” of the software by increasing its size and processor use with
only the additional functions and protections he or she desires. In addi-
tion, it must be noted that the security of automatic updating hides the
potential new problems that might be caused by patch code: just as with
revision of any other type of writing, even though one issue might be fixed
by a patch, the added code might in turn generate new issues that need to
be addressed by more patches, and so on. Put another way, the Ship of The-
seus will never become fully watertight.

Accordingly, not all patches or updates are equal. In some cases, they
are designed to fix seemingly trivial but potentially devastating issues. For
example, Valarissa et al. (2012) fixed the problem of a typo relating to an
account-specific variable in the code for microblogging platform rstat.us.
This typo left open the possibility of “orphaned” code, or a set of refer-
ences to data that no longer existed. Specifically, the Ruby variable :de-
pendent had been initially written as :dependant, which meant that
any other functions attempting to make use of the variable would not lo-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

110  •  rhetorical code studies

Revised Pages

cate it properly anywhere in the software. Even though this particular issue
was extremely easy to resolve, the participating developers—the “fixer” as
well as the developer who had initially coded in the problem—identified
their roles clearly for public scrutiny since discussions about that update
were recorded alongside the updated code itself.

Often, patches cause any number of unforeseen and potentially signifi-
cant consequences for users and their systems, making a “fix” the catalyst
for problems that would never have been encountered if the program had
not been updated. For this reason, patching generally involves the possi-
bility that a user will back out of (or “downgrade”) the update, making
software versioning (the use of differently updated iterations of a pro-
gram) a particularly intriguing phenomenon among meaningful forms
of communication. While any individuals participating in some discourse
might revisit previously stated ideas and reconsider their positions, there
is no “undoing” of the reconsidered discourse; for code, however, this can
literally be the case, and new issues can be erased outright by a rollback to
a previous version. As a result, users who have opted to employ different
versions of a given program often find themselves engaging in otherwise
identical activities that, by necessity (e.g., being unable to patch success-
fully) or desire (e.g., avoiding problems likely to result from a patch), re-
flect specifically situated contexts stemming from the capabilities of the
software versions they are currently using.

The Drupal content management system, for example, is widely used
and considered highly successful because of its numerous customizable
“plug-and-play” modules, software add-ins developed by volunteers to
help website administrators achieve specific tasks. Each module has its
own set of dependencies and effects on the overall Drupal system, mean-
ing that some modules work in unexpected fashions when other modules
are also installed, and many developers recognize the potential for catas-
trophe here. The sheer number of potential module combinations that
one could install makes any sort of anticipation for particular bundles of
modules almost impossible. As a result, a common practice among Dru-
pal developers is to provide patches to problems they identify and then ask
volunteers to point out any problems stemming from specific modules
present in their installations.

Such a practice treats the development of a given module or the larger
Drupal project as a continually emerging process of fragmented innova-
tion and standardization, as developers are tasked both with experiment-
ing in new ways with technological capabilities and ensuring that the pro-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  111

gram is as likely not to fail or break when used by the largest population
of administrators and users as possible. When the software does break,
then, the moves undertaken by involved developers present clear indica-
tors of the rhetorical awareness of the current situation—fixing an unfore-
seen problem—and of the purposes various administrators might have for
setting up particular module combinations in their Drupal installations.

For example, one very commonly used module is drush (short for
“Drupal shell”), a command-line tool that allows Drupal administra-
tors to modify their systems quickly from a terminal window rather than
through the default browser-based interface. When used in combination
with git, a program that provides versioning control for collaboratively de-
veloped software, drush—or almost any Drupal module—can be updated
and tweaked regularly and relatively quickly. Differences in software ver-
sions of both drush and git between individual Drupal developers, how-
ever, can quickly lead to complicated situations in which it is difficult for
all involved to easily smooth out problems experienced by some or all.
When a developer attempts to change “working versions” of a program
to test out changes to code, git should track the version currently under
development. For Drupal users jgraham et al. (2011), the ways git and
drush (specifically, a subcommand of drush called “drush make”) worked
at the time disrupted the successful progress of development for either
program, and the ensuing discussion provided an example of the rhetori-
cal and discursive nature of composing and revising code. jgraham noted
that a perceived similarity in command syntax for two git command flags
(--working-copy and --bare) should have, but did not, provide simi-
lar results for a git-related update, as both flags defined the location of
a “working” directory in which development would occur, although the
--bare flag specifically changed the hierarchical directory structure of
the code project. Functional differences in multiple versions of git and
drush used by developers, however, resulted in multiple patch failures.
Some users received error messages, while others received successful re-
ports, only to discover the code they thought had been patched had not ac-
tually been.

To resolve these issues, jgraham et al. (2009) created several small
patches that attempted to unify calls for one flag (--working-copy) to
use the other flag (--bare) so that all potential developers would have
the same project structure on their systems. But problems persisted: those
who reported using git versions 1.7.0.x continued to encounter the is-
sue, while those using newer versions of git perceived it as resolved. At

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

112  •  rhetorical code studies

Revised Pages

the same time, drush as a project was being updated by a larger body of
coders, and the command being problematically patched (drush make)
was being merged as a project into a “core” project for drush, meaning
that further development might vary wildly in focus and scope toward the
problem jgraham had identified. Even though specific problems had been
identified, some of which were even addressed and resolved, the rhetori-
cal concerns of the ad hoc development community were not fully satis-
fied; the code-related constraints of individual Drupal administrators, and
their proficiency with Drupal, drush, and git (or their desire or ability to
upgrade any or all of those components) further limited each in achieving
complete success in regards to this technical issue.

Such practices for patching and resolving problems with software,
successful and unsuccessful, are not limited to Drupal; whenever devel-
opers collaborate on projects with diverse goals and on varied computer
systems, contextual issues arise, in a fashion parallel to the contextual
difficulties of rhetorical communication in any other form. When the
members of massive volunteer communities of developers collaborate
on software projects, such as in the case of Mozilla Firefox, the rhetori-
cal influences developers and computer systems exert upon one another
are myriad in significance and purpose; in some cases, the intended action
says more about the various goals for the program held by individual or
specific groups of developers than those held the community at large. As
with any collaborative development activity, rhetorical affordances emerge
as being particularly apt (or not) for certain ends and types of action,
whether that may be radically altering the trajectory of a given project’s
development or merely communicating clarification about the intended
purpose of some contributed code lines.

Conclusions

Discursive and nondiscursive collaborative activities surrounding code de-
velopment, from commenting to forking to patching, demonstrate rhetor-
ical character and value as fundamental components of meaning making
through these activities. The potential for rhetorical interaction between
developers and technologies through dynamic OSS community structures
and development processes is especially important when considering ac-
tivities like forking, patching, and naming. The meaning constructed and
communicated through these practices suggests a set of tools by which
developers actively engage one another with important and potentially ef-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Analyzing Arguments Surrounding Code  •  113

fective rhetorical strategies that are employed in the writing of code as well
in the writing that takes place around code. While at times these rhetori-
cal efforts may be difficult to recognize—since they may not clearly reflect
more conventional forms of discourse—they nonetheless work to compel
readers (e.g., collaborators) to engage in particular types of action or activ-
ity as much as to articulate the operations to be executed by the computer.

In the next chapter, these rhetorical strategies and others in (and
around) code will be explored in more depth through the lens of soft-
ware development of the web browser Mozilla Firefox, a program col-
laborated on by thousands of programmers over the past seventeen years.
The browser’s code, in all its iterations over that span of time, and the de-
velopment thereof have rhetorically impacted subsequent development,
as well as use, of the program for particular ends. Where rhetorical action
was explored as occurring in relatively conventional text and activities in
the examples provided earlier in this chapter, the forms of engagement
undertaken through code do not always closely resemble traditional dis-
course. Nonetheless, they create and communicate meaning in rhetorical
fashions, and it is important for scholars interested in code as a means of
communication to recognize how and why this occurs.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

115

chapter 4

Developing Arguments in Code
The Case of Mozilla Firefox

While the overwhelming majority of critical inquiry into the rhetoric of
digital media and technologies has focused on key forms of conventional
discourse—those that often surround and describe code practices and
texts that make up digital media and technologies—there is also a terri-
tory ripe for further investigation: those very code practices and texts. That
is, if we are to understand the expressive products of code as rhetorical,
we may well find it useful to know how code rhetorically facilitates those
expressions. So, in order to clarify a rhetorical understanding of code as
valuable object of and site for study, I will embark on an initial, albeit in-
depth, analysis of code serving as and creating meaningful communica-
tion (rhetorical action).

There are numerous levels of code, including programming languages
and systems of meaning as communicated through interfaces, and it is
rare that a software program will not make use of multiple levels in order
to function as the developer(s) and users desire. Any of these languages
or infrastructural systems could, and should, be examined to illuminate
this avenue of scholarship. For the purposes of this project a single code
artifact—the Mozilla Firefox browser, whose code is composed primar-
ily in two high-level programming languages (C++ and JavaScript)—will
serve as the specific object of study. Part of the reason Firefox is an ex-
cellent case study is because the code languages used to create it reflect,
relatively faithfully, the syntactic and grammatical structure of English,
making the example code texts discussed below more accessible than if
they were written in a more conceptually abstract and less recognizable or
accessible programming language.

As a rhetorical artifact, Firefox is made up of numerous parts: a soft-
ware program’s source code, its compiled “executable” files, the conven-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

116  •  rhetorical code studies

Revised Pages

tional discourse surrounding developmental coding efforts, and the tra-
jectory of its development processes over a set period of time. While these
latter two qualities were discussed in depth in the previous chapter, that
analysis could not be complete without an examination of code in addition
to its related commentary. After all, a software program exists more in code
than in discussions about its code. Thus, each of the approaches to mean-
ing making listed above offers a unique lens into the rhetorical potential
of code as object of study, especially as meaningful practice. In addition,
each lens helps demonstrate how code-related discourse engages varying
audiences and corhetors to initiate, participate in, or otherwise facilitate
certain types of action.

As a result, it is necessary to investigate code, as distinct from code-
related discourse, as rhetorically significant and powerful forms of text as
well as of practice. Of special interest is the range of action enabled by and
through meaning constructed in and communicated through code. This
sort of communication affects activity not only explicitly in or of code’s
making (such as continued development and code composition) but also
the sort of user-centered interactive software engagement that occurs
when the program is executed or interpreted by a given machine. The rela-
tive accessibility of the languages making up Firefox (C++ and JavaScript)
will provide significant assistance in helping the rhetorically minded but
potentially code-illiterate reader to recognize how arguments within the
code operate toward various suasive ends.

To perform this analysis, I examine several selections of code from the
Mozilla Firefox web browser that offer insight into the range of rhetori-
cal appeals that its developers have made through the code they have con-
tributed to the program, primarily through the high-level, object-oriented
programming languages C++ and JavaScript. Firefox has been an open
source project for nearly two decades, and thousands of programmers
have been involved in its development, writing even more thousands of
iterative revisions and additions to the Firefox code base. Thus, the sorts
of rhetorical efforts made in the browser’s code can tell us a great deal
about how members of the development community have effectively com-
municated with one another about their preferred means of structuring
the browser so as to enable particular types of activities.

Further, Mozilla Firefox is developed by a globally distributed network
of volunteers engaging in regular, publicly archived discussion about
improving its code and who, in some cases, have done so for well over a
decade. As a result, it is nearly impossible to explore the program’s code

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  117

comprehensively, although some scholars interested in software, code,
and culture have investigated its potential, most notably Black (2015). As
Black has noted, “any attempt to critically read source code faces limita-
tions of scale and code when applied to modern application software that
is comprised of dozens of modules and millions of lines of code” (n.p.).
For a program like Firefox, which has had numerous versions over nearly
two decades, these limitations are compounded significantly for critics. In
this chapter, I seek not to provide an exhaustive response or realization of
others’ inquiries but to extend some of their questions, as particularly use-
ful, toward rhetoric-oriented critical analysis.

The Mozilla Firefox browser relies on operating system (OS)-
independent web protocols to function, although there are differences
supplied in OS-specific versions of the program so that it can be used suc-
cessfully in one system versus another (such as Windows 7 as compared
to Mac OS X). In addition, Firefox’s publicly available source code allows
it to be downloaded and modified by any interested and motivated indi-
vidual for his or her own purposes. We can see in the browser’s code the
collection of efforts to promote rhetorical action in a number of inter-
connected venues, from stylistic nuances explicit in lines of code to dis-
cursive appeals made in developers’ mailing lists about lines of code and
how “best” to structure them. As outlined in the previous chapter, these
appeals may not always overtly take into account rhetorical concerns and
strategies, but such strategies are nonetheless present and crucial to the
collaborative development of the program. Inside the code for Firefox, we
can often trace how particular rhetorical decisions impacted subsequent
work on and discussion about the browser, as well as how those decisions
impacted the makeup of the development community invested in contin-
ued work on the project.

It is important to note that Firefox, like many software programs con-
structed from the coding efforts of numerous developers, is fueled in large
part by the energy of corporate and institutional motivation and writing
practices influencing developers’ code styles, programming behaviors,
and motives for participation. By this I mean that while Mozilla’s code is
fundamentally rhetorical, many of the examples included in this chapter
are unlikely to appear explicitly creative or easily identifiable as rhetorical.
One can consider the difference between a mundane conversation and
a State of the Union address delivered by a US president: both are filled
with efforts to construct and communicate meaning, but the latter text is
generally described as more rhetorically powerful or more likely to be per-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

118  •  rhetorical code studies

Revised Pages

formed by a skilled orator. Programming as meaningful work, like writing
or speaking, is often defined by the strictest and most instrumental under-
standing of its productive purpose, such as Nardi’s (1995) objective-based
explanation: “[t]he objective of programming is to create an application
that serves some function for the user” (6). Despite this relatively limited
view of what code is and what it is for, there have been insightful develop-
ments in several related fields (e.g., rhetoric, technical communication,
media studies) that point to the potential for an understanding of code
practices and texts as rhetorically valuable.

The closest such movement may be the study of the rhetoric of science,
since the rhetorical decisions made by scientists in order to induce scien-
tific or public audiences to action often hinge on tools and strategies that
may initially seem arhetorical in content, style, and delivery (Fuller 1997).
However, as Ceccarelli (2001) observed, “Some of the best research in the
rhetoric of science undertakes the close reading of individual scientific
texts to show exactly how they were designed to compel scientific audi-
ences at particular moments in history to acknowledge the truth of their
authors’ theories” (3). I mean to suggest that a similar, although not en-
tirely parallel, line of inquiry is available through the study of code texts,
including those whose syntax and purpose may be relatively distant from
the conventions and makeup of natural discourse.

At the same time, much of the rhetorical importance of a given code
text, as with other forms of text, occurs as much in the sort of action
and activity it induces as in the specific content of any individual text. As
Muckelbauer (2008) has argued, the very nature of suasion “is not primar-
ily interested in what the proposition is [of a given argument. . . .] Instead, it
emphasizes what the proposition does, the responses it provokes and the ef-
fects it engenders” (18). In order to understand code as a type of rhetorical
communication, we need to recognize its potential for this kind of action.
Further, we need to recognize how an argument proposes action, since
that consideration informs and influences how an audience will engage
the proposition.

Code suggests, through its logical structures and operations, par-
ticular ways of engaging with certain ecologies comprising of techno-
logical and human agents alike (e.g., computer processor, developer,
end user). How user experiences are anticipated and facilitated, how
data is calculated and transmitted, and how a program should be further
developed are all types of engagement undertaken through arguments
in code. Keith (1997) described rhetoric—when considered as an ar-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  119

chitectonic or “design” art—as “concerned with design of language
for purposes both individual and social” (234). Where Keith has men-
tioned language, we should extend that thought beyond conventional
definitions of language as discourse to include all manner of symbolic
action, especially (for rhetorical code studies) algorithmic procedure
and the logic of software code.

Admittedly, there is some difficulty in describing the rhetorical prac-
tices of code via the vocabulary of conventional rhetoric, and it may pos-
sibly be fruitful for us to embrace only some of rhetoric’s terminology
to describe and comprehend code as “rhetorical.” Prelli (1989) outlined
the concerns necessary for analyzing the ethos of scientific rhetors, given
their frequent appeals to skeptical or disinterested engagement with their
arguments (as discourse and as the seemingly objective presentation of
data). Gaonkar (1997) has suggested that for such efforts in the rhetoric of
science, any attempt to clarify “the dialectic between implicit and explicit
rhetoric makes the very idea of rhetoric undecidable [. . . .] Any critical
text can be shown to possess a level of reflexivity that makes it rhetorical.
The lesson is invariably that there is no exit from rhetoric” (75). That said,
Gaonkar’s argument does not suggest that the analysis of “implicit[ly]”
rhetorical texts is less worthwhile than that of conventional texts. Instead
he suggests that all meaningful communication is rhetorical, and it is the
attempt to distinguish between types of conscious or unconscious influ-
ences on rhetorical suasion that is misguided.

An examination of the assorted rhetorical discursive and code-based
efforts described briefly above can help us begin to answer significant
questions that surround and further define the goal of rhetoric in an age
increasingly influenced by digital technologies. Such questions include,
but are not limited to, the following:

	1.	 What sorts of rhetorical appeals are constructed and communicated
directly within the various layers of a program’s code, including its
logic and how that logic is constructed so as to be expressed effec-
tively to various human (and potentially nonhuman) audiences?

	2.	 What sorts of appeals are offered in intracode communication, spe-
cifically in noncomputational comment lines of text “explaining”
code functions above, below, or otherwise near those comments?

	3.	 Further, what implications might we recognize as emerging from
the influences each type of appeal exerts upon the forms of commu-
nication that extend across levels of interface and interaction?

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

120  •  rhetorical code studies

Revised Pages

Admittedly, critical efforts to understand how answers to these questions
emerge out of specific, situated instances of rhetorical activity may not be
replicable across multiple situations in ways that more empirical method-
ologies might facilitate. Inquiries into these concerns can nonetheless of-
fer critical understanding into the complexities of suasion in and through
code, and the contextual influences upon specific communicative activi-
ties will make each set of texts and practices unique. Further, the insights
gained by examining code as a rhetorical form of communication have the
potential to enlighten us as to a broader comprehension of, and ability
to employ more effectively, rhetorical communication and the strategies
available to a rhetor.

Mozilla Firefox: A Code Study

In addition to having an incredibly large and active development com-
munity, Firefox is one of the most popular web browsers currently avail-
able (behind Google Chrome and Safari), with an estimated 9.3 percent
share of the browser “market” as of December 2017 (W3Counter 2017).
Firefox is also arguably the browser with the greatest amount of develop-
ment taking place primarily through community-based volunteer efforts
utilizing an open source software philosophy; while its major competi-
tors are as “free” in a financial sense as Firefox, their source code is not as
freely available. For example, source code for the Chrome web browser is
not publicly available, although source code for the OSS browser project
Chromium, on which Chrome is based, is publicly available, albeit with
some different features and licensing parameters than those of Chrome.
Because Firefox exists as an open source project, nearly all its code and
discourse surrounding its development is publicly accessible, which al-
lows interested parties to explore the trajectories of development, col-
laboration, and conflict that have occurred over a decade of activity. As a
result, Firefox serves as a rich site for critical inquiry into the converging
and interacting influences of code and conventional discourse on rhetori-
cal action taking place as part of and response to the development of the
browser.

A Brief History of Mozilla

The Firefox web browser was originally conceived in the early 1990s by
employees of the Netscape Communication Corporation as a program

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  121

called Navigator, based on Mosaic, one of the very first Internet brows-
ers. In fact, the name “Mozilla” comes from a combination of Mosaic and
Godzilla, the latter name referring to the Navigator project as “a beast
vastly more powerful” than the former (Hamerly, Paquin, and Walton
1999). While Navigator was offered to the public at no charge, it was not
initially popular thanks to increasing efforts by Microsoft to integrate its
own web browser, Internet Explorer, into its Windows 95 and subsequent
versions of the OS. After several years of diminishing browser share, in
January 1998 Netscape released the source code for its newest version of
the program under an open source software license and turned over pri-
mary development responsibilities to the global community in the form of
the Mozilla Project (Mozilla n.d.b). The Mozilla Project, in turn, assumed
a new form in 2003 as the nonprofit Mozilla Foundation, collecting to-
gether under its governance the assorted open source projects contribut-
ing to the Mozilla software suite (Mozilla n.d.a).

The shift from corporate to open source and volunteer-based develop-
ment marked a major shift for Mozilla’s web browser project. The brows-
er’s code became publicly and freely available, meaning that anyone inter-
ested could not only download the browser and its code but that person
could also modify the code as he or she saw fit; further, one could release
his or her own modified version of the program, assuming that release ad-
hered to the original license, that is, its source code also made freely avail-
able alongside the compiled, executable version of the browser. Commu-
nication (i.e., email) related to the program’s development also became
publicly available, meaning that any interested parties could browse or
engage in discussion about the project and involve themselves in code and
any other communicative efforts to influence Mozilla’s developmental tra-
jectory. The semiorganized, semichaotic nature of the developer commu-
nity for the Firefox browser, as demonstrated through members’ writing,
provides rhetoricians with the capability to examine how these wildly dif-
ferent types of social interaction are weighed against the other for rhetori-
cal, influential purposes.

With Mozilla’s projects existing as a set of connected but distinct de-
velopment communities working on similarly connected but distinct
software programs, the potential was initially overwhelming for rhetori-
cal chaos to affect the progress of any of these programs, to say nothing
of the suite as a whole. But with almost seventeen years of collaboration
and tradition to “normalize” the broad behavior of the development com-
munities within Mozilla’s fold, contemporary rhetorical concerns for

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

122  •  rhetorical code studies

Revised Pages

Firefox’s developers are quite different in many ways than they had been
earlier, although the voluntary and open nature of the project means that
some of the initial chaos remains a fundamental component of developer
socialization and interaction.

Examining the development of Firefox through its code practices and
texts is important not only for the field of rhetoric and for technical com-
munication but also for scholars interested critically in the cultural dimen-
sions of software and code, such as Black (2015), who performed topic
modeling analysis to explore various sociocultural influences on devel-
opment of the browser. Firefox and the events and texts described in this
chapter provide a lens through which we might more fully understand the
social and industrial influences exerted upon software programming par-
adigms as well as how we might approach more clearly and expertly the
user experiences anticipated by developers through the code structures
they implemented in their programs. Where rhetoric focuses on not just
what is said in a given argument but how it is communicated and what it
induces, inquiry into the culture of development might involve exploring
(as an example) how social structures and conventions impact the compo-
sitions and interactions of particular communities and the sociopolitical
ends to which they might work. These sorts of concerns are occasionally
incorporated into the discussion below, although they serve primarily as
threads to be tugged on by other scholars interested in the influence of
culture on code development.

The Turn to Open Source Software: Ramifications
of Firefox’s Development

By transforming its software development process from a corporate to a
community-based project in the early 2000s, Mozilla had radically rede-
fined its general rhetorical situation. It was no longer the product of a
monolithic entity providing updates or innovations on an obscured sched-
ule to a passive consumer base; instead, the Mozilla Project’s new orga-
nizational scheme meant that the product and the process were open and
available, not just for consumption but for further development. This is
not to suggest, however, that Firefox’s development is fully egalitarian,
democratic, or even meritocratic, even though the Mozilla website identi-
fies the project as the last of these (Mozilla n.d.a). The project consists of
a structured hierarchy of volunteers, from bug reporters to contributors to
administrators; the administrative group determines which contributions

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  123

at a given time, if any, will be added to the official code package for the
program.

Despite claims of meritocratic structures and mechanisms, the ex-
istence of a hierarchical administration in regards to Mozilla’s software
programs has the potential to work against the values of an otherwise
“open” approach to community-based collaboration efforts. As Hamerly,
Paquin, and Walton (1999) described the evaluation process:

One of mozilla.org’s most important roles is to draw lines as to what
code is accepted and what is not. We must factor in a number of issues.
First and foremost is merit. Is it good? [. . .] [Each of the projects
that make up the Mozilla suite has] a designated “owner.” That per-
son knows the code best and is the arbiter of what should go in to that
module and what shouldn’t.

The administrator(s) of a particular program—and for Firefox there are
several—are able to influence the development of that program based on
their anticipated vision for the program rather than on the merits of pro-
vided contributions. Even though the code may be weighed on whether it
is “good,” as noted above, that quality is defined by the project’s “owner,”
a head administrator explicitly named to have control over the project.
What does he or she value in regards to a particular line, or set of lines, of
code? Who was involved in the process of naming an owner to the project,
and what did the process resemble? Further, and perhaps of greatest inter-
est to rhetoricians, what impact(s) do these influences have on the types
and means of action that are subsequently promoted through code and
natural language discourse? While an entirely chaotic environment is not
any more helpful to collaborative development than an overly structured
or authoritative one, it is important to recognize how these decisions con-
strain the development process.

software versioning systems and rhetorical action

Code contributions to projects like Firefox or other open source pro-
grams, of varying scales and scopes, are commonly provided via software
versioning (described briefly in the previous chapter), a system of differ-
ent versions of a code artifact from one another that emphasizes the spe-
cific line-by-line differences that exist in each iteration of the code files.
Each developer maintains his or her own copy of the program’s “official”
files and makes changes as he or she sees fit to various components of the

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

124  •  rhetorical code studies

Revised Pages

program. Then, any changes a developer might feel are worthy of inclu-
sion in the official version of the program are submitted to the project’s
management for review. If any of those changes are deemed acceptable,
they are “committed” to the program, and the official version of the soft-
ware code is updated to include those changes. As of September 1, 2016,
Mozilla currently has almost 150 developers listed publicly as members of
its organization, participating in more than three hundred distinct proj-
ects, and using two major software versioning utilities to track browser
development.

Each of these utilities is fueled by a distinct exigence, although the indi-
viduals contributing to either are spurred by their own motives and sense
of kairos. Mercurial serves as the primary tool with which the development
of Firefox takes place; individuals engaging in the active, community-
preferred (or at least leadership-preferred) work on the browser contrib-
ute their code to their companions through the Mercurial system. GitHub,
meanwhile, is a “social coding” website designed to make the versions of
a program’s code more accessible and collaborative. GitHub works as an
archive of the contributions made through Mercurial, although there are
numerous developers offering code changes through GitHub, effectively
working outside of the “normal” workflow.

Mercurial is a “distributed” versioning system that enables developers
with Internet access to share their individual changes to a project’s code
by “pushing,” sending those changes out to everyone else via a web-based
repository (serving as a technological record-keeping intermediary) on the
mozilla.org server as part of the organized Mozilla Developer Network
(Mozilla 2012a). Through Mercurial, which works very similarly to several
other software versioning tools, each developer has his or her own clone of
the project and makes changes to a personal branch—essentially a unique
version of the code—and can request “pulls,” submissions for incorpo-
ration in the central, official version of the project. A significant amount
of discourse occurs between developers in this push-pull process, and
some versioning tools refer to pull requests specifically as lively spaces for
discussion and debate (GitHub 2012); many developers are likely to sug-
gest small (fewer than 20 lines of code) changes to specific files within
the Mozilla project, and the administrators and various testers are tasked
with determining the value and potential consequences of accepting each
of those changes.

The counterpart to Mercurial is the repository website GitHub, which
is built on git, a different version control program (Mozilla 2012b) argued

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  125

by some to be more flexible; Thomson (2008) referred to git as MacGyver
and Mercurial as James Bond, with the former capable of doing almost
anything but the latter being exceptionally skilled for the “right” tasks.
The GitHub website provides a system for easy tracking, commenting,
and forking (making new, individually customizable versions) of git-based
projects. For its “Gecko-Dev” GitHub repository, which includes a signifi-
cant majority of the code for the Firefox browser, Mozilla has over 1,000
forks, potentially distinct branches from the official repository “tree,”
each maintained and updated according to the individual schedules of the
developer(s) who initiated a given fork. Many of those forks serve to in-
corporate, hierarchically, changes made to other projects, through git or
Mercurial, that affect the Gecko-Dev code and the programs it oversees in
turn. GitHub serves as an accessible place for numerous potential develop-
ers who may not be (or who may not be interested in being) associated
with the official Mozilla Developer Network. One of GitHub’s primary ap-
peals, beyond its relative ease of use, is the number of users and reposi-
tories it hosts. GitHub staff reported that by the end of 2012, more than
two million users were collaborating on more than three and a half mil-
lion projects (GitHub 2012). It is thus safe to say that Mozilla can draw the
interest of random parties for occasional development through GitHub
rather than through Mercurial, due to the former’s relatively accessible
web interface and visible archive of code contributions.

Mercurial and git, however, are not the only tools used for Firefox de-
velopment. Mozilla’s Treeherder utility provides developers with infor-
mation about the results of their individual automated browser builds
and the tests run on those builds (Mozilla 2016). Essentially, Treeherder
functions as a collaborating corhetor, working alongside human devel-
opers to evaluate the functionality and performance of individual builds
(and thus the individual code contributions leading to those completed
builds). Treeherder’s agency lies in its “gatekeeper” role, as it checks and
potentially rejects code proposals that do not pass the tests it runs on de-
velopers’ browser builds. If a proposed code change does not comply with
the goals of the Treeherder tests, it is likely to be rejected by the human
administrators of the project, even if the goals of that code are valued by
them (although subsequent revision of a proposal may ultimately result
in its acceptance). The code running Treeherder has a powerful rhetori-
cal impact on the code for Firefox, arising out of the project’s develop-
ment practices, through human developers modifying the latter, based on
meaning (i.e., test results and their significances) provided by the former.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

126  •  rhetorical code studies

Revised Pages

While GitHub similarly influences the practice of development through
commit request capabilities (i.e., letting anyone propose code changes for
review), Treeherder is even more direct in its activities: it provides auto-
mated review itself, implicitly passing judgment on the potential value of
a code change. That is, the utility becomes an active agent participating
in the rhetorical activities of software development related to the Firefox
browser. The vast majority of the review “judgments” reported are me-
chanical failures, code unable to compile due to some error in one or more
operations within the compilation process. What makes the judgments
noteworthy is that regardless of whether or not a proposed contribution
works on a developer’s machine, the output error messages provided as a
result of Treeherder review suggest to the developer that his or her code is
faulty or otherwise unworthy of inclusion in the set(s) of proposals to be
discussed within and scrutinized by the more substantial Firefox develop-
ment community. For example, Rahm et al. (2016) identified, discussed,
attempted to replicate, and then subsequently developed a variety of po-
tential solutions to a bug related to playing audio in the browser. Multiple
contributors confirmed that the problem existed, clarified among them-
selves what, exactly, the problem seemed to do and what it affected, and
then tested the assorted proposed solutions that various individuals of-
fered. As Treeherder reported successes or failures with the proposals,
contributors adjusted their solutions accordingly. Eventually—just over
two months after the initial bug report filed by Rahm—one solution was
deemed to be effective and worthy of incorporation into a browser update.
Thus the Treeherder program, in other words, serves as a kind of proto-
typically situated machine-involved audience to whose specifications all
Firefox code must successfully adhere. At the same time, Treeherder is an
active rhetor that promotes a specific form of action: suggestions for im-
provements to be undertaken by developers so as to improve the Firefox
browser.

To an extent, a recognition of Treeherder as an important audience
collapses much of the rhetorical potential regarding Firefox’s collabora-
tive development into a standardized, “sanitized” process in which the
default product—the browser download that is emphasized on the pro-
gram’s website—is valued far more than any of the customized, nuanced
attempts to experiment with the software, attempts in which some devel-
opers might otherwise engage themselves. This is not to suggest that ex-
perimentation does not occur, but the atmosphere generated in part by the
operation of Treeherder is one in which experimental play or discovery is

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  127

not esteemed as highly as focused development toward universal produc-
tivity, to support the broadest of purposes, through the browser. Accord-
ingly, the full range of rhetorical possibilities in regards to the code of the
browser is not (yet) explored thoroughly at the level of the general Firefox
development community.

Rhetorical Genres in Code

The development of OSS projects like Mozilla Firefox, like all the activi-
ties of collaborative and discursive communities, is social in nature: in-
dividual members contribute to a program’s code base and deliberate, in
and around that code, on how best to improve upon contributions from
all manner of developer. The social quality of collaborative development,
however, is not limited to computational or efficiency-based optimization
of a given program’s code, or even of code in general. Instead, the activ-
ity of participating in collaborative development serves to form and re-
fine the nature of the development community itself. For groups that find
themselves constantly and dynamically reforming through the waxing and
waning enthusiasm of individual members of those groups, this social ne-
gotiation of community values and practices is key to ensuring that suc-
cessful code and discursive practices alike remain continually fueled by a
variety of contextual and kairotic factors.

Part of the negotiation of code-as-communicative-means involves
a recognition of the variety of genres used by developers to induce one
another to act, in different ways and to different ends. Miller (1984) ob-
served that genre serves as a means of rhetorical action constituting and
reconstituting a discourse community through its recurrent use. Among
the implications Miller provided for this social understanding of genre is
the following: “[a] genre is a rhetorical means for mediating private in-
tentions with social exigence; it motivates by connecting the private with
the public, the singular with the recurrent” (1984, 163). In other words,
genre provides a space for rhetors to understand the constraints and affor-
dances available to them when interacting with particular audiences and
identifying themselves as members of those audience communities. For
communities making use of genre systems, what Bazerman (1994) defined
as “interrelated genres that interact with each other in specific settings”
(97), we can see numerous purposes and efforts at work, sometimes har-
moniously and sometimes in dissonant and competing ways. Spinuzzi
(2003) described an even more complex framework of the genre ecology as

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

128  •  rhetorical code studies

Revised Pages

“a descriptive model of compound mediation [. . .] highlight[ing] idio-
syncratic, divergent understandings and uses of artifacts and the prac-
tices that surround them as they develop within a given cultural-historical
milieu” (n.p.). The genre ecology as a concept is especially valuable for
understanding software development as a rhetorical activity, thanks to
ecological recognition of and attention to generic artifacts as diverse as
code libraries and scripts to user manuals and face-to-face conversations
between developers.

For developers, the various genres of code, in-code comments, and
meta-discursive commentary all function in ways that allow specific de-
velopment communities, and individual members thereof, to establish
and reify their contemporary professional and community-based identi-
ties. Individual iterations of these genres simultaneously contribute to the
confirmation of particular genres while also reconstructing them accord-
ing to ever-changing social values and preferences. Code practices, such
as those discussed in this chapter, are demonstrated not as unchanging
mathematical constructions designed solely for computer technologies but
instead as a fluid set of genres. Just like more discursive forms of com-
munication, code genres are developed through the continued changing
of logical and stylistic preferences that define “acceptable” compositions
within specific communities. The processes that generate these compo-
sitions are significant rhetorical, and not merely formal, components of
these genres. Multiple developers in an OSS community work together in
specific ways to create a program: a combination of in-line comments, email
discussions, public reviews of code proposals, and the evolving structures
and logic of code operations themselves. The community functions within
this ecological system, and it thrives only when all members are able to
access at least some of its components to contribute their efforts to the
remainder of the community.

Murray, in his 2009 work on “non-discursive” rhetoric, asked a sig-
nificant and relevant question for rhetoricians interested in computation,
although he focused primarily on image as an alternative object of rhetori-
cal study to writing and oration: How might rhetoricians understand the
goals, appeals, and qualities of rhetoric when examining means of com-
munication that are not primarily or explicitly discursive? As an initial re-
sponse to this question, Murray established a five-point “non-discursive
theory of writing” to acknowledge a set of values that are nondiscursive
but nonetheless potentially significant for communicating discursively
as well: “will-to-image,” “will-to-improvise,” “will-to-intuit,” “will-to-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  129

juxtapose,” and “will-to-integrate” (140–41). Murray’s question, and the
kernel of his nondiscursive writing theory, are key for any sort of recog-
nition of the rhetorical genres in which developers regularly work, es-
pecially those outside the bounds of what is conventionally recognized
as discursive communication. For Murray, the key was in understanding
the generative qualities of a particular symbolic languages and systems;
he pointed to the capabilities of images (and, implicitly, other meaning-
making systems) as they allowed rhetors to disregard explicit reasoning
in favor of intuitive invention and play so that they can “generate con-
nections as they compose multimodal texts,” whether as students in the
classroom or otherwise (188). For code (in comparison to images), the
symbolic logic of computation itself can be acknowledged as a nondis-
cursive system of symbolic meaning and action; as with image and many
other forms of communication, when it comes to understanding expres-
sions within a system, there is often a barrier to “entry” for individuals
unfamiliar with that systems or the forms of communication used within
it. Further, meaningful activity is not just possible but inherently present in
any effort to communicate through the system.

By building on this recognition, rhetoricians can begin to view more
clearly the process of coding through a rhetorical lens, which in turn al-
lows us to consider more fully and effectively both the act of coding and
the range of expressions a particular act of coding enables and constrains.
Brown (2015), in looking at software exploits and building on the work of
Gaonkar (2004) and Streuver (2009), has argued for a definition of rheto-
ric as an art interested in what is most widely “possible” in a given situa-
tion, in contrast to many traditional interpretations of rhetoric as focused
on the “probable” (Brown 2015, 75–81). “Potential,” then, might best be
understood as an oscillation between possibility and probability, the mo-
ment when a rhetor—or any of the influential factors involved in a par-
ticular rhetorical event—considers possible means and decides which of
those to pursue, based on probable success of inducing particular ranges
of action (with “success” interpreted in any number of ways). The means
by which developers anticipate potential action, to be undertaken as part
of the expression of a set of software algorithms, says a great deal about
the expectations for action those developers incorporate into the very logic
of their work. Similarly, the ways users of that software have the potential
to interact with it says just as much about how the values imparted from
developer to user are recognized, accepted, or challenged as part of the
software’s use.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

130  •  rhetorical code studies

Revised Pages

The two genres discussed below certainly recur across numerous code
projects, iterations, and authors, but they are not always typified in easily
recognizable ways; that is, the formal or structural components of many
genres do not lend themselves easily to code texts written in different lan-
guages or for different communities whose style preferences may radically
vary from those of other communities (cf. an examination of code genres
via Drupal modules by Brock and Mehlenbacher 2017). The purposes for
particular recurrent responses to given situations are certainly recogniz-
able, as are the kinds of action that rhetors may attempt to induce through
their communicative efforts. As a result, these genres may best be under-
stood as responses to tensions surrounding recurrence in Firefox, namely,
as individuals and groups attempt to entrench or continue particular tradi-
tions and normalized behaviors while also, or in response, presenting in-
novative or unconventional approaches to solving particular problems or
answering particular questions considered significant to the development
community.

demonstrations of innovation

Firefox, as one of the major Internet browser programs used around the
world, has had numerous proposals to extend its capabilities beyond the
simple rendering of HTML-related data. The majority of these proposals
are trivial in nature, extending functionalities of the browser in specific
and situational ways, sometimes focused more heavily on code practices
and style (e.g., altering variable or function names or logic to suit read-
ability within the broader development community), while at other times
focused on the expressive possibilities of the program’s code (e.g., how
the user experience will change, and to what ends it will change, when a
particular adjustment to the program is made). In any case, proposed con-
tributions to the Firefox code base are often themselves further developed
and revised in order for the community to determine just how beneficial, if
at all, such a set of contributions might be to the project.

Among those features most often proposed and experimented with
are tools for the development of Firefox itself, possibly since those tools are
meant to be used by a relatively small population of users (the developers
themselves). In such cases we can observe developers’ rhetorical influence
upon other developers as the clearly identified audience. Despite this fo-
cus, however, the proposals generally possess qualities that reflect prac-
tices related to large-scale development activities. For example, we can see
in table 4.1 a relatively recent adjustment to a development script the inno-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  131

vation upon an existing feature, as part of a tool called the Device Manager
Android Debug Bridge, or ADB, designed for the Android mobile operat-
ing system. While the ADB is itself a relatively recent innovation (inspired
by the rise of the mobile device OS), this adjustment to the code also in-
troduced some new and potentially significant capabilities. Originally, the
ADB code (written in the Python scripting language) enabled a developer
to upload directories of files from the local hard drive to an external server.
As noted by gbrownmozilla (2011) in the comments at the beginning of
the quoted excerpt (lines 95–97), however, the code as originally written
did not account for symbolic links, links that pointed to other directories
and that may not have been intended to get included in the set of data to
be uploaded or that may not even exist (in an accessible location or even at
all) on the remote server. gbrownmozilla modified the ADB code to work

Table 4.1. Proposed Android ADB change by gbrownmozilla (2011)

Line # Code by gbrownmozilla (2011)

94 def pushDir(self, localDir, remoteDir):
95 # adb "push" accepts a directory as an argument, but if the

directory
96 # contains symbolic links, the links are pushed, rather

than the linked
97 # files; we push file-by-file to get around this limitation
98 try:
99 for root, dirs, files in os.walk(localDir):
100 relRoot = os.path.relpath(root, localDir)
101 for file in files:
102 localFile = os.path.join(root, file)
103 remoteFile = remoteDir + "/"
104 if (relRoot!=". "):
105 remoteFile = remoteFile + relRoot + "/"
106 remoteFile = remoteFile + file
107 self.pushFile(localFile, remoteFile)
108 for dir in dirs:
109 targetDir = remoteDir + "/"
110 if (relRoot!="."):
111 targetDir = targetDir + relRoot + "/"
112 targetDir = targetDir + dir
113 if (not self.dirExists(targetDir)):
114 self.mkDir(targetDir)
115 self.checkCmdAs(["shell", "chmod", "777", remoteDir])
116 return True
117 except:
118 print "pushing " + localDir + " to " + remoteDir + "

failed"
119 return False

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

132  •  rhetorical code studies

Revised Pages

through each file and directory link individually, ensuring that all data be-
ing uploaded was an appropriate part of the call (i.e., removing irrelevant
symbolic links from the operation). In addition, gbrownmozilla included
a line of code to modify each file’s permissions as it is uploaded, a helpful
task for developers but one that might compromise file security for non-
developers, as he specifically set all uploaded directories (and their files)
to be readable, writable, and executable by all users on a system.

gbrownmozilla’s innovation reflects broader practices in that they
made use of multiple loops in order to ensure that the exact sort of outcome
he anticipated was likely to occur. Before gbrownmozilla’s proposed code
change, there was no check to determine whether or not all files being up-
loaded were “valid” and not security risks. gbrownmozilla’s ordering of
relevant operations, complemented by informative commentary, induces
other colleagues to consider the implications of the ways they attempt to
construct software for their own, or others’, benefit. It is not just that files
are separated from directories but that each is checked against conditions
ensuring its relevance to the attempted activity (the uploading of one or
more directories and its files). Because they are not the same, gbrown-
mozilla has distinguished between them, but because they have similar
qualities, those tests are repeated in order to lessen the chance of an error
occurring. In other words, gbrownmozilla has positioned readability and
clarity in intent over optimized computation so that the tool they worked
on is not only improved by that contribution but that other developers can
see how and why that contribution has a positive impact on the browser’s
development. It is certainly possible that some of gbrownmozilla’s col-
leagues will interpret this code as inelegant or inefficient, but its value
in communicating what it does clearly and accessibly, so that it might be
improved further by other contributors, is arguably greater than any lost
machine efficiency in its current form.

A second example provides insight into innovative developments based
on the anticipated preferences of users when it comes to interacting with
Firefox each time the program is opened. Originally, the relevant browser
code allowed for one of two events to occur when Firefox was started: if
the user had saved a preferred home page, it would be loaded; otherwise,
a default home page would be loaded instead (Walden, Goodger, and Ro-
mano 2006a). This functionality, however, was improved multiple times.
One early improvement was to recognize the possibility of a separate
home page URI being set for each browser “tab” that a user might want

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  133

to have open when the program starts (Walden, Goodger, and Romano
2006b). A much more recent innovation made use of the browser’s since-
expanded capacity to provide an initial home page via the browser’s about
protocol, written almost immediately above the untouched lines of code
written four years earlier (Sharp et al. 2010). Excerpts from each of these
innovations can be seen in comparison with the others in table 4.2.

Table 4.2. Three iterations of Firefox startup home page code (2006a, 2006b, 2010)

Line # Code by Walden, Goodger, and Romano (2006a)

69 var useCurrent = document.getElementById("useCurrent");
70 var chooseBookmark = document.getElementById("chooseBookmark");
71 var bookmarkName = document.getElementById("bookmarkName");
72 var otherURL = document.getElementById("otherURL");

[. . .]
80 if (bookmarkName.getAttribute("uri") == " (none)") {
81 useCurrent.disabled = otherURL.disabled = true;
82 bookmarkName.disabled = chooseBookmark.disabled = false;
83
84 return "bookmark";
85 }
86
87 var homePage = document.getElementById("browser.startup.home

page");
88 if (homePage.value == homePage.defaultValue) {
89 useCurrent.disabled = otherURL.disabled = true;
90 bookmarkName.disabled = chooseBookmark.disabled = true;
91 return "default";
92 }
93 else {
94 var bookmarkTitle = null;
95
96 if (homePage.value.indexOf("|") >= 0) {
97 // multiple tabs—XXX dangerous "|" character!
98 // don’t bother treating this as a bookmark, because the level

of
99 // discernment needed to determine that these actually

represent a
100 // folder is probably more trouble than it’s worth
101 } else {
102 #ifdef MOZ_PLACES

[. . .]
115 #else

[. . .]
124 if (bookmarkName.getAttribute("uri") == homePage.value)
125 bookmarkTitle = bookmarkName.value;
126 #endif
127 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Table 4.2.—Continued

Line # Code by Walden, Goodger, and Romano (2006b)

72 var win;
73 if (document.documentElement.instantApply) {
74 // If we’re in instant-apply mode, use the most recent

browser window
75 var wm = Components.classes["@mozilla.org/appshell/window

mediator;1"]
76 .getService(Components.interfaces.nsI

WindowMediator);
77 win = wm.getMostRecentWindow("navigator:browser");
78 }
79 else
80 win = window.opener;
81
82 if (win) {
83 var homePage = document.getElementById("browser.startup.

homepage");
84 var browser = win.document.getElementById("content");
85
86 var newVal = browser.browsers[0].currentURI.spec;
87 if (browser.browsers.length > 1) {
88 // XXX using dangerous "|" joiner!
89 for (var i = 1; i < browser.browsers.length; i++)
90 newVal += "|" + browser.browsers[i].currentURI.spec;
91 }
92
93 homePage.value = newVal;
94 }

Line # Code by Sharp et al. (2010)

77 syncFromHomePref: function ()
78 {
79 let homePref = document.getElementById("browser.startup.

homepage");
80
81 // If the pref is set to about:home, set the value to "" to

show the
82 // placeholder text (about:home title).
83 if (homePref.value.toLowerCase() == "about:home")
84 return "";
85
86 // If the pref is actually "", show about:blank. The actual

home page
87 // loading code treats them the same, and we don’t want the

placeholder text
88 // to be shown.
89 if (homePref.value == "")
90 return "about:blank";

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  135

The basic functionality of the code—generating a window of content
for the user when the browser is initialized—remains relatively stable
across each text iteration, but the innovations incorporated by each set
of developers, when viewed together, offer a valuable collection of argu-
ments made through the code so that the functionality would not only be
preserved but improved to coincide with other development efforts whose
relation to this code may initially seem to have unrealized potential.

The code draws originally on a simple but powerful ability—the saving
of URI text strings as “bookmarks”—of which one could then serve as a
startup home page (with the implicit assumption that the site was likely
to be visited frequently). A separate URI could be used as a home page as
well, or the default home page as a final choice (most notably http://www.
google.com/firefox, which allowed for a Mozilla-branded Google search).
The first major update to the code and its functionality (the update by
Walden, Goodger, and Romano 2006b) involved expanding its use—
fitting into a space commented on originally but not actually composed in
code—to incorporate multiple tabs, separated in code by the | (pipe) char-
acter. This code makes use of a loop (when meeting the successful condi-
tion that browsers.length > 1) not unlike those demonstrated in the
“FizzBuzz” examples in chapter 2. In the case of the home page, the loop
iterates through each URI string in a user-provided list in order to load
and display each appropriate website in its own tab. The second update
(by Sharp et al. 2010) builds upon that feature by prepending another set
of functions to the relevant file, checking to determine whether the user-
provided home page will be loaded or if the about:home screen will be
loaded instead. about:home is part of a module that provides browser-

91
92 // Otherwise, show the actual pref value.
93 return undefined;
94 },
95
96 syncToHomePref: function (value)
97 {
98 // If the value is "", use about:home.
99 if (value == "")
100 return "about:home";
101
102 // Otherwise, use the actual textbox value.
103 return undefined;
104 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

136  •  rhetorical code studies

Revised Pages

specific abilities. For example, about:plugins provides information
about the third-party plugins and extensions a user has installed in the
browser. Similarly, about:home can either load a blank screen or the de-
fault home page, depending upon the user’s preference, so even when no
explicit startup page is defined, a user could still choose whether or not to
load the default page.

Each of these innovations builds upon the previous iteration without
a fundamental reworking or removal of that previous code. The develop-
ment community is able to perceive the value of each added functional-
ity, experimenting with the possibilities provided without necessarily
demanding an overhaul of its purpose or of its code each time another
contribution is proposed. Further, developments in one area of the proj-
ect can often be easily included in the aims of another area, such as the
browser-specific screen about:home. Even though the specific code
added by each contributor differs in style, its generic purpose, if not its
form or structure, is nonetheless consistent: the community demonstrates
its acceptance of participation by grafting new code onto existing code,
experimenting with the boundaries of accepted code practices.

normalizations of code practices

Just as new features are constantly introduced by developers of varying
skill or familiarity with a program and tested by the broader community,
so too are the code texts constituting those features scrutinized and re-
composed so that they adhere to the (admittedly evolving) programming
style prescribed by the community. Essentially, the generic conventions
being pushed against as part of efforts to innovate are also at least tempo-
rarily reified by developers who feel comfortable with the forms of code-
based communication they engage in with one another.

One such example describes the procedure by which a pop-up window
is rendered and given focus. Lamouri et al. (2010) provided a JavaScript
module for the browser that would cause the program to create, render,
and focus on the pop-up window. Two years later, the same feature has been
reworked, not to alter the feature itself but to reframe its mechanisms sty-
listically in such a way as to more closely reflect the procedural logic and
rhetoric of Firefox development in a broader sense. See table 4.3.

The code is not drastically different between these versions, despite
dozens of revisions and improvements to the code made between 2010
and 2012 within the file in which these lines appear. The way each of the
operations has been restructured is telling: the functionality added by

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Table 4.3. Firefox pop-up removal code in JavaScript, 2010 (upper) and 2013 (lower)

Line # Code by Lamouri et al. (2010)

838 // If the user type something or blur the element, we want to
remove the popup.

839 // We could check for clicks but a click is already removing
the popup.

840 let eventHandler = function(e) {
841 gFormSubmitObserver.panel.hidePopup();
842 };
843 element.addEventListener("input", eventHandler, false);
844 element.addEventListener("blur", eventHandler, false);
845
846 // One event to bring them all and in the darkness bind them

all.
847 this.panel.addEventListener("popuphiding", function(aEvent) {
848 aEvent.target.removeEventListener("popuphiding", arguments.

callee, false);
849 element.removeEventListener("input", eventHandler, false);
850 element.removeEventListener("blur", eventHandler, false);
851 }, false);
852
853 this.panel.hidden = false;
854 this.panel.openPopup(element, "after_start", 0, 0);

Line # Code by ehsan et al. (2013)

671 // If the user interacts with the element and makes it valid or
leaves it,

672 // we want to remove the popup.
673 // We could check for clicks but a click is already removing

the popup.
674 function blurHandler() {
675 gFormSubmitObserver.panel.hidePopup();
676 };
677 function inputHandler(e) {
678 if (e.originalTarget.validity.valid) {
679 gFormSubmitObserver.panel.hidePopup();
680 } else {
681 // If the element is now invalid for a new reason, we

should update the
682 // error message.
683 if (gFormSubmitObserver.panel.firstChild.textContent !=
684 e.originalTarget.validationMessage) {
685 gFormSubmitObserver.panel.firstChild.textContent =
686 e.originalTarget.validationMessage;
687 }
688 }
689 };
690 element.addEventListener("input", inputHandler, false);
691 element.addEventListener("blur", blurHandler, false);
692

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

138  •  rhetorical code studies

Revised Pages

Lamouri et al. (2010) was clearly valued by the community as a positive
contribution to the program, but the way it was coded required normaliza-
tion or standardization in order for it to be genuinely accepted alongside
numerous other changes in Firefox’s code and accepted coding style(s)
during this time period. This is not to suggest that the code is now in any
sort of “permanent” form. It may well continue to be revised for some
time to come, especially as broader stylistic preferences in JavaScript con-
tinues to evolve.

So what exactly is happening in the code described in table 4.3? The
procedure is not extremely complicated: when someone closes a pop-
up or completes a form in it, the pop-up will disappear from view (and/
or provide an error message to the user if something unexpected occurs
at any point during this process). What distinguishes the 2013 version
of the code from the 2010 version is how individual events have been an-
ticipated, most notably the shift from a general eventHandler into
separate blurHandler and inputHandler functions, even while
addEventListener and removeEventListener remain descrip-
tive of general, catch-all functions. inputHandler is especially note-
worthy in regards to what has been added, since it allows for developers
and users to catch the reason(s) as to why a particular problem has arisen,
most notably when a user is attempting to complete a form-based pop-
up that closes unexpectedly. In addition, there is a validity check when
inputHandler is called in order to determine whether or not its code
should be executed, the condition beginning if (e.originalTarget.
validity.valid) { (ehsan et al. 2013). These possibilities are addressed
obliquely in the initial set of comments in the 2013 version of the code:

// If the user interacts with the element and makes
it valid or leaves it,

Table 4.3.—Continued

693 // One event to bring them all and in the darkness bind them.
694 this.panel.addEventListener("popuphiding", function

onPopupHiding(aEvent) {
695 aEvent.target.removeEventListener("popuphiding",

onPopupHiding, false);
696 element.removeEventListener("input", inputHandler, false);
697 element.removeEventListener("blur", blurHandler, false);
698 }, false);
699
700 this.panel.hidden = false;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  139

// we want to remove the popup.
// We could check for clicks but a click is already
removing the popup.

This extra-code explanation offers context as to reason for changes being
made to the original version of the pop-up’s closing functionality, but it
also offers a judgment on that initial iteration: according to the original,
the pop-up was removed when “the user type [sic] something or blur [sic]
the element” (Lamouri et al. 2010). While the distinction appears minor,
the user’s “interaction with the element and mak[ing] it valid” (ehsan et
al. 2013, emphasis added) is significant: it signals to the developing com-
munity that an incomplete explanation of a particular task is potentially
detrimental since it does not fully describe why relevant code attempts to
achieve that task.

Interestingly, at least one “non-industrial,” if not incredibly com-
mon, practice has been left alone in the code; specifically the comment,
“One event to bring them all and in the darkness bind them,” present
in both the 2010 and the 2013 version, refers to the ring of power in The
Lord of the Rings, suggesting that the Firefox community maintains a still-
thriving culture of geek humor. In addition, the comment also implies
that a single, catch-all way to deal with events (as it precedes the general
addEventListener function) may be preferable to more specific, cus-
tomized methods, even though the 2013 code has been revised to incorpo-
rate specific blurHandler- and inputHandler-related operations. As
a result, even though the “functional” code and informative commentary
has been updated to reflect changes in community standards and prefer-
ences, the characterful commentary provided to describe other parts of
code is left intact. This may indicate that “helpful” comments are a genre
worth attending to, while incidental comments are not, a practice that
in many ways seems to be the opposite of generic conventions for code,
where the effectiveness of each line is significant. Ultimately, the Firefox
community’s efforts to norm its practices remain varied and inconsistent
in execution, suggesting that the community is further made up of numer-
ous smaller development groups whose members have their own motives
and motivations and who may not be interested in working on all aspects
of the browser equally.

When a developer is interested in contributing code to the program, he
or she must balance the desire to propose innovative code structures and
expressive functionalities with a need to adhere to the socially acceptable

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

140  •  rhetorical code studies

Revised Pages

stylistic and logical code practices that make up Firefox development at
that specific point in time. As participants in a genre system that makes
use of oscillating social practices of innovation and normalization, the
members of Firefox’s development community are able to influence one
another on how “best” to further the browser’s capabilities, although they
may not always agree. These efforts are not limited to larger-scale con-
cerns, as many developers offer only minor changes to components of the
browser’s code, and these changes may resemble flurries of small-scale
revisions and subsequent discussion thereof. As a result, that code, when
studied across multiple textual iterations, is ripe for examination of how
specific rhetorical devices incorporated into code can influence develop-
ment in particular ways.

Rhetorical Devices in Code

Just as developers are frequently compelled to demonstrate their larger-
scale comprehension of how a program works (or should work) through
the logical reasons underpinning their code decisions, so too are they ex-
pected to work effectively, in a microcosmic sense, through the code they
write. As demonstrated in chapter 2 by the variety of means by which a de-
veloper could create a quine, and the delicacy involved in ensuring that it
can be interpreted or executed as intended, the choices a developer makes
at “smaller” scales—such as in individual functions or operations—rarely
demonstrate objective superiority as much as they demonstrate the devel-
oper’s approach to solving a particular problem and to articulating that
solution through code. Further, it is rare that a developer attempts to per-
suade his or her audience explicitly through these code decisions alone. In-
stead, the potential intent behind his or her code contributions can and
should be read as a combination of rhetorical and computational deci-
sions; it is not enough that code might function mechanically but it also
needs to be understandable by, and meaningful to, an audience who needs
to build upon that code to continue developing a program toward particu-
lar ends.

repetition and arrangement

Those code functions and variables providing critical operations (i.e.,
those valuable to a number of important tasks) might be referred to re-
peatedly at crucial points in a larger body of code. Similarly, such critical
code may be arranged within particular code files or directory structures

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  141

in such a way as to call attention to their significance. Together, develop-
ers’ use of repetition and arrangement in meaningfully important ways al-
lows them to make potentially powerful rhetorical claims through their
code that resemble classical devices meant to describe conventional ap-
proaches to repeating and structuring important information. Among
those commonly appearing in code texts include anaphora, the repetition
of words or phrases at the beginning of statements; epistrophe, the repeti-
tion of final words or phrases for rhetorical effect; symploce, the combina-
tion of anaphora and epistrophe; and exergasia, the repetition of ideas (al-
beit often in different wording or delivery across each iteration thereof).
By repeating a particular point or statement in the same syntactic position
or in conceptual relation to another given point, a rhetor can draw atten-
tion not only to those repeated ideas, terms, or phrases, but also to the
forms of argument that center on that repetition in order to induce audi-
ences to act in various ways.

The notion of rhetorical repetition is also closely related to the idea of
climax, in which an argument’s structure is based on the increasing signif-
icance of included statements, with more important ideas and points fol-
lowing the introduction and explanation of less important ideas. Climax
is very often a key factor in computational procedure, because the order of
operations within a given file or function impacts exactly how a set of data
is calculated and used for particular purposes. While distinct functions
and operations can be defined apart from one another, it is their combina-
tion in a certain order that facilitates the specific computational action(s)
anticipated and desired (or, in some cases, unanticipated and not desired)
by a developer. As a result, the rhetorical activities engaged in by software
programmers often attend to the ways of reading code that suggest im-
portance given to procedures based on their apparent repetitive qualities.

Repetition is an incredibly important consideration for any act of com-
munication, as a rhetor can orient an audience toward certain concepts
or arguments in particular ways through the skillful (or unskilled) appli-
cation of repetition. Repetition is also significant for programming for
multiple reasons: repeated blocks of code can contribute to inefficient
computation through file bloat; inconsistent use of code blocks or logi-
cal structures (as different versions of similar code may be called at vary-
ing points in a program’s code); and inaccurate reading practices as col-
laborators are forced to decipher what precisely should be culled, revised,
or otherwise altered throughout the extent of a program’s code texts. In
some programming circles, such as the general Ruby development com-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

142  •  rhetorical code studies

Revised Pages

munity, the desire to avoid these issues is articulated through the “DRY”
principle or philosophy, DRY standing for “Don’t Repeat Yourself ” (Mat-
sumoto 2007, 479). In essence, DRY programmers seek conciseness as a
means to elegance, although this conciseness does not mean never repeat-
ing code but rather avoiding unnecessary repetition (e.g., the difference
between redefining an object class vs. initializing a single object out of
that class). With a number of the world’s most popular programming lan-
guages making use of modularity such as that of object orientation, the
impact that unintentional repetition—or, more accurately, unintentional
iterative difference across multiple versions of a given code block—might
have on a program’s successful execution is potentially enormous.

Rhetorical attention to repetition and arrangement is especially impor-
tant for a large-scale OSS program like Firefox, since development on the
browser involves work on dozens of interlinked modules each of whose
code needs to set itself apart from the others. Each of these same modules,
however, must also maintain a stylistic and logical form close enough to
the others to make it capable of being modified and improved upon by
an interested party who might have worked on some other component of
Firefox code. While the code can never reach a fully scalable “fractal” state
(wherein the same general structures are perfectly or infinitely repeated at
different scales of code), there are nonetheless observable efforts by de-
velopers to convince one another to implement and maintain particular
forms of procedural repetition as part of an effort to suggest the use of
some coding paradigms over others.

One such example of repetition within the code for a single module
is the early work composed a decade ago for a spam filter in the Mozilla
suite’s email and news program (which has since become the program
Mozilla Thunderbird). dmose%netscape.com and peterv (2002) contrib-
uted the initial code to the project, making use of a function (among oth-
ers) called processNext() to iterate through the list of messages to
be read and dealt with by a user. Technically, there existed multiple pro-
cessNext() functions, each working similarly but with a different fo-
cus: one to move between folders, one to move between messages within
a folder, one to mark spam messages, and one to mark spam folders. Each
function in which some variation of processNext() resided called
processNext() at the end of its own operation in order to compute
whether or not processNext() would need to be run again. The short-
est of these variations is given in table 4.4.

The function in which a given folder is determined to be spam calls

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  143

processNext() multiple times when it is run. First, it is defined as a
subfunction of the markFolder() function. Here it is initially not run
but its operational structure is established so that it can be run when
called elsewhere in the code (specifically, in line 197 at the end of the
quoted excerpt). Second, it is referred to as part of the mark() function
inside processNext() itself, meaning that it provides the data from its
own execution to another function that can make use of it. Second, and
more importantly, it is called in the last line of the markFolder() func-
tion, the same place it appears at the end of the other functions in which
some variation of processNext() is defined. In essence, every time
markFolder() is called, processNext() will run as the final and cli-
mactic function to ensure that it can potentially be run again as needed;
its name even suggests this sort of forward progression that builds up as
it proceeds. Since every component function of the spam filter relies on a
version of processNext(), its role as perhaps the most significant part of
the filter code is made clear through its repeated calls as well as in its posi-
tion as the final function executed within each part of that code.

While code does not necessarily demand an epistrophic or climac-
tic approach to its computational operations, it is nonetheless true that

Table 4.4. Example of Firefox spam filter code in a processNext() function

Line # Code by dmose%netscape.com & peterv (2002)

179 function markFolder(aSpam)
180 {
181 function processNext()
182 {
183 if (messages.hasMoreElements()) {
184 // Pffft, jumping through hoops here.
185 var message = messages.getNext().

QueryInterface(nsIMsgDBHdr);
186 mark(message, aSpam, processNext);
187 }
188 else {
189 gJunkmailComponent.mBatchUpdate = false;
190 }
191 }
192
193 getJunkmailComponent();
194 var folder = GetFirstSelectedMsgFolder();
195 var messages = folder.getMessages(msgWindow);
196 gJunkmailComponent.mBatchUpdate = true;
197 processNext();
198 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

144  •  rhetorical code studies

Revised Pages

the procedural structure of its algorithms, as well as the readability of
the above markFolder() function, generally relies upon an accumula-
tion of logical complexity and activity from each line to the next. In other
words, an early computation influences subsequent computations. As a
result, “late-stage” operations are often the most complex or significant
sets of computation as they have the potential to work with the results of
earlier operations. Much of this structure arguably stems from a desire
by developers to communicate an intended functionality to themselves or
collaborators; this approach is what Knuth (1992) has called “literate pro-
gramming,” a means by which programmers clearly articulate what their
code does through the code itself. Literate programming stands in stark
contrast to most programming whose clarity is defined by extra-code doc-
umentation like comments, specifications, or discussion in other forums.
While most code’s readability is influenced most explicitly by the names
chosen for specific functions, variables, and objects, there is an implicit
argument made by a developer for a particular logical structure as pre-
sented to readers through the code, such as the construction of the Word
class and its related objects in the HashMapClass example discussed in
chapter 2. This implicit argument is evaluated as much on its ability to be
understood by developers as its ability to compute successfully.

A relevant and interesting quality of object-oriented languages like
C++, Java, Ruby, and others is that the definition of particular func-
tions and objects can occur outside of linear procedure; declaring what
a block of code does is separate from calling that code (having it actually
compute as part of the executing program). Note, for example, that the
processNext() function included within the function function
markFolder(aSpam) above, while called as the final component of
the code block, is the first piece of code defined within it, a crucial bit of
information that clarifies for a reader just what this specific version of
processNext() will do in this context (as distinct from process
Next() for the other mail-related activities that might take place when
the program is used).

The structure of computational procedure—where early opera-
tions build upon one another to deliver potentially complex subsequent
operations—suggests an implicit recognition of significant ordering for
rhetorical purposes, where a developer indicates an important set of con-
cepts to his or her audience at particular steps in an algorithm. This sug-
gestion may occur for creative or professional purposes, stressing a para-
digm of practice whose impact extends beyond the specific instance under

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  145

scrutiny at any given moment. Such practices, however, are not limited to
the placement of significant operations and procedures (in climactic, ana-
phoric, or epistrophic senses) but are extendable to the idea of repetition
itself: when should a given function be called? When should a set of op-
erations be written multiple times for similar or distinct purposes? These
considerations reflect an awareness of exergasia, which—while related to
the devices of repetition and arrangement discussed so far—has the po-
tential to be exponentially more powerful in communicating significance
through iteration (and implicit or explicit impact of the variations across
relevant iterations).

exergasia

Just as repeated, or closely similar, arguments can provide both rhetor
and audience with an understanding of the range of possibilities available
to either through those arguments, so too can repetition serve to cement
the suggested necessity for a particular rhetorical approach. Repetition
in code can offer developers with an understanding of preferred stylistic
practices by associating multiple separate functions or sets of operations.
Rhetorically, this can be considered a type of exergasia, a particular type of
repetition: the repetition of a significant idea across multiple forms of ex-
pression. For software programs that consist of hundreds of thousands of
lines of code, exergasia is a helpful device that works to instruct readers
on how other developers have determined code structures within the pro-
gram should work. Simply put, it provides a procedurally rhetorical en-
gagement, to use Bogost’s (2007) term, with the code’s anticipated func-
tionality, both as a component of the larger program and as an entity that
persuades audiences to act in regards to its facilitated activities.

For a massively collaborative OSS program like Firefox, exergasia is a
powerful tool by which myriad developers signal to one another how par-
ticular procedures should be constructed and executed across functions,
modules, and iterative program releases. By making use of explicit repeti-
tion to accomplish multiple related tasks, a developer can suggest that the
operations and syntactical structures of the repeated code are valuable by
way of both the frequency of such structures’ repetition and the relations
perceived to exist between each iteration of the code. Similarly, the method
of repetition is critical to an understanding and use of code as rhetori-
cally powerful communication. Given the ability of code to loop iteratively
through a set of operations, it is possible, if not inevitable, for repetition
to occur conceptually but not explicitly in the statements that constitute the

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

146  •  rhetorical code studies

Revised Pages

looping code. Looping is often viewed as an elegant way to describe iterat-
ing code, so when it is not used, we are presented with an opportunity to
examine why more “conventional” (or arguably “inefficient”) repetition is
implemented as well as what its implementation can suggest to us about
development practices surrounding a program.

Object-oriented programming (OOP) languages have the potential to
make especially interesting use of exergasia through the instantiation of
unique objects. An object, in an OOP language, is a set of data potentially
containing any number of variables, functions, structures, etc. and which
is built on a larger class defining the essential parameters of each indi-
vidual object instantiated from that class. That is, an object is a bundle
of data with properties from a larger class; these properties are inherited
from the class and shared across multiple objects. The use of those prop-
erties by any individual object, however, is distinct from other objects’
use thereof. This concept, generally speaking, has its root in Plato’s the-
ory of forms: the ideal version of a thing is reflected, always imperfectly,
in realized interpretations of that ideal. “Human” might be considered
an object class, and every human is thus an instantiated object of that
class: we each (generally speaking) have two eyes, a nose, two arms, and
so on, just as we are covered in skin and possess the same assortment
of skeletal bones and internal organs. However, no two humans (other
than twins) could be said to be identical despite these shared features. As
a result, we can discuss activities and procedures in which humans can
engage, thanks to the set of capacities that extends beyond the scope of a
single individual, but different individuals may perform the same activity
in very different ways.

The idea of a human as a helpful example “object” for the purposes
of object-oriented programming is so pervasive among developers that it
stands in as a demonstration in Mozilla’s developer documentation for
contributing to the Firefox project (and other relevant projects). Specifi-
cally, documentation authors saskatchewancatch et al. (2016) describe the
ways in which object-oriented languages like JavaScript enable practices
of iteration and repetition alike through the potential constructed through
object classes (or, in the case of JavaScript, prototype constructors), us-
ing “person” as the most accessible example by which to model object-
oriented programming:

In the example in table 4.5, a prototype has been established (Person)
and two specific person objects (person1 and person2) have been de-
fined based upon its properties. Any adjustments made to the prototype

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  147

will affect the person1 and person2 objects, and any number of objects
can be instantiated to serve as distinct entities that are nonetheless “re-
petitive” in terms of the code functions they share from the same proto-
type. In this sense, all relevant code is simultaneously repeated across all
prototypical instances and expressed in potentially unique ways, as each
iteration of the prototype differs from most, if not all, of the others. The
argument, provided through the use of exergasic code written as object-
oriented structures, can implicitly and explicitly call attention to the mod-
ular and repeatable nature of the functions and operations called to help
achieve certain goals.

It is no coincidence that “person” serves as the go-to example for such
a discussion. By equating “personness” with “objectness” to explain how
object-oriented code works, saskatchewancatch et al. (2016) suggest that
the construction of code objects is as full of symbolic meaning as any
other means by which we might consider and constitute the human form.
(It would be incorrect, however, to fully map or analogize programming
objects, prototypes, or classes to humans or sets of human behaviors,
characteristics, cultures, and so on. It is a useful metaphor for a brief en-
gagement with the basics of object behavior and inheritance.) To an ex-
tent, this example provides its own exergasic demonstration of the vari-
ety of unique qualities that might be possessed by any individual person,
qualities that only emerge through the activity of computational action. To
state it bluntly, we are what we do, and we are constrained in what we do
by what we can (and cannot) do, sets of affordances defined individually

Table 4.5. Example of object creation in JavaScript

Line # Code by saskatchewancatch et al. (2016)

1 var Person = function (firstName) {
2 this.firstName = firstName;
3 };
4
5 Person.prototype.sayHello = function() {
6 console.log("Hello, I'm " + this.firstName);
7 };
8
9 var person1 = new Person("Alice");
10 var person2 = new Person("Bob");
11 var helloFunction = person1.sayHello;
12
13 // logs "Hello, I'm Alice"
14 person1.sayHello();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

148  •  rhetorical code studies

Revised Pages

and socially, not unlike the sorts of repetitive rules outlined in the Person
prototype example.

For an example of exergasia inside Firefox’s production code base,
troy%netscape.com (1999) provided an early series of code blocks to com-
pute the size parameters for the minimum and maximum width and height
properties of various components of the Firefox browser. JavaScript, like
many code languages, has a pair of properties called width and height
that can belong to certain types of objects and which store the rendered
width and height values (in pixels) of entities drawn on a computer screen.
But this only provides one value for each dimension; for those components
of a program that calculate their own size as derivatives of other objects’
width and height, customized functions are necessary to make and
store those calculations, and troy%netscape.com composed four such
relevant function blocks. Because these blocks worked almost identically,
troy%netscape.com provided a uniform structure across all four of the
methods needed to compute their values (i.e., one method each for mini-
mum width, minimum height, maximum width, and maximum height).
One of the code blocks appears in his initial text as seen in table 4.6.

This block is made up of two parts. The first is a variable declaration
that sets the minimum width unit size to be used for comparative pur-
poses. The second is a conditional statement that determines what the
minimum width of a browser component should be, based upon the size
restrictions imposed upon it by any “containing block,” or (in this case)
the parent-level component in which the current component resides. The
associated size blocks differ only in the specific variables being called by
the relevant code, for example, height-related blocks look for “vertical”

Table 4.6. Example of repetition in Firefox’s code related to browser size
calculations

Line #
Excerpted code by troy%netscape.com (1999), from /layout/generic/
nsHTMLReflowState.cpp

1395 nsStyleUnit minWidthUnit = mStylePosition->mMinWidth.GetUnit();
1396 if (eStyleUnit_Inherit == minWidthUnit) {
1397 mComputedMinWidth = aContainingBlockRS->mComputedMinWidth;
1398 else {
1399 ComputeHorizontalValue(aContainingBlockWidth, minWidthUnit,
1400 mStylePosition->mMinWidth, mComputed

MinWidth);
1401 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Developing Arguments in Code  •  149

rather than “horizontal” values, and maximum-related blocks look for
“max” rather than “min” values.

Because the four blocks are so close in appearance as well as in prox-
imity to one another, there is a relatively clear suggestion that they have
related functional purposes. Given the size of Firefox’s development com-
munity, this suggestion is powerful: it implies a particular stylistic scheme
(namely, that related code should look and function alike) and that this
is the scheme preferred by the community at large, the normalized and
industry-aligned practice. As demonstrated earlier, such preferences are
constantly changing, hence the width and height properties being
shifted from static to dynamically calculated values assigned to variables
used throughout the program. Nonetheless, the kairotic appeal of newly
introduced code can energize its use for some time before critical scrutiny
is applied to the specific means by which that code is constructed.

Conclusions

Just as rhetorical action is ever present in discussions about any human
activity, so too is it demonstrated through the activity of code production.
The social practices that developers engage in as part of their rhetorical
efforts serve to influence them—as communities and as individuals—to
participate in particular types of development, for particular ends. Because
code, like other forms of language, serves to describe more than what it
literally states, the variety of rhetorical strategies and devices available to
developers in code is relatively astounding. This is significant in that de-
velopers can, and do, induce one another in implicit and explicit ways to
accept the practices they suggest through the texts they produce.

The act of reading code as a rhetorical text and practice, however, can
hold considerable difficulty for the vast majority of rhetorical critics unfa-
miliar with programming or the languages thereof. Examinations of code
like those provided in this chapter may offer helpful examples for future
investigations and support for (as much as is possible) more comprehen-
sive and in-depth scrutinies of individual code projects, trends, and genres
across multiple programs, or even of programming languages themselves.
The possibilities for analysis and application of the rhetorical activities
found in code (whether for industrial, civic, or pedagogical purposes) are
not necessarily endless but are myriad and diverse, and it is in our interests
as scholars and teachers of rhetoric to attend to the overwhelming amount

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

150  •  rhetorical code studies

Revised Pages

of code being written each day and the means by which its authors com-
municate meaning to collaborators and other readers through their code.

Mozilla Firefox provides a valuable locus for an in-depth analysis of
rhetorical efforts made in code by a massive programming community
of thousands over a decade of collaborative development. While much of
the specific code produced reflects industrial as well as individual stylistic
preferences and trends for invention, it nonetheless demonstrates a var-
ied range of innovative attempts by numerous programmers to engage
their colleagues (as audiences) in creative and highly suasive ways. These
attempts can be recognized at relatively large scales, such as in how in-
novative experimentation and normalizing revision occurs over time. But
they also occur at small scales, such as when particular logical operations
make use of climactic or epistrophic structures in order to lead a developer
audience to compose code in alignment with those structural paradigms.
As a result, we are able to witness a dynamic, continually changing ecol-
ogy of development practice and suasion whose components also shift
and develop over time.

In the next chapter, I turn from my focus on analysis to inventive ex-
perimentation, offering a series of exercises related to the rhetorical
composition of code. These exercises are intended to be accessible to the
nonprogrammer audience, and they can be practiced in the web browser
rather than requiring any other special software to be installed. Together,
these exercises function as a set of progymnasmata that introduce funda-
mental concepts of programming and suggest means of employing those
concepts for effective rhetorical communication through the composi-
tion of code texts. While the progymnasmata are hardly comprehensive
in coverage of rhetorical principles applied in code, they may be valuable
for readers who remain skeptical or confused about the actual activity of
composing via procedure rather than conventional discourse. Further, for
readers with more familiarity with programming, the progymnasmata
may be useful exercises for explicitly engaging with particular rhetorical
principles during an activity generally considered to be a purely instru-
mental form of writing.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

151

chapter 5

Composing in Code
A Brief Engagement with JavaScript

While we can engage code from “without” in the form of a conventional
scholarly investigation, there remains a missing component integral to
understanding how arguments are (and can be) made in code: the activ-
ity of actually composing code texts. This is not to suggest that one must be
an expert coder or programmer to develop arguments in code, but relevant
knowledge—of procedure, specific language syntax, and so on—certainly
facilitates the development of more complex or nuanced communication.
Put another way, echoing Haefner’s (1999) call for composition instruc-
tors to discuss code contexts, functional possibilities, and the relationship
between Structured Programming and the hierarchical structures of many
American corporations, the practice of composing in code will absolutely
benefit our subsequent rhetorical analysis and critique of code if we are to
effect change in a world in which it is more or less impossible to escape
the influence of software and digital technology.

In this chapter, we will approach composing code with a focus on ex-
perimenting in JavaScript, a popular high-level scripting language used in
thousands of websites and web applications. In fact, it is incredibly likely
that most, if not all, of the websites you frequently visit rely on JavaScript.
Because JavaScript can be written and interpreted in a web browser, there
is no need to use a specific operating system or to install extra software
in order to practice any of the exercises discussed in this chapter. While
there are powerful and complex programs written in JavaScript that are
run independently of a browser (such as Node.js, a platform for web ap-
plications), such programs are beyond the scope of our exercises here.
The concepts covered in this chapter should provide robust enough mate-
rial for an initial engagement with programming.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

152  •  rhetorical code studies

Revised Pages

That said, although this chapter provides some introductory exposure
to JavaScript and to computer code fundamentals, it is not really a useful
substitute for a programming textbook; for those interested in learning
more about code and JavaScript in particular, at the time of this writing
Haverbeke’s (2015) Eloquent JavaScript and Duckett’s (2014) JavaScript and
jQuery: Interactive Front-End Web Development are especially useful and acces-
sible for the novice programmer. For our purposes, it is enough to learn
about the principles described in this chapter and to apply them toward
certain rhetorical ends via the included exercises.

Procedural Progymnasmata

Classical Greek rhetoric introduced the concept of the progymnasmata to
students of rhetoric seeking to improve their abilities, and the progym-
nasmata have become staples of rhetorical education since. Progymnas-
mata are exercises in training particular rhetorical principles in order
to improve a student’s use of those being emphasized in any particular
example.

In many ways, progymnasmata encourage imitation of particular strat-
egies as forms of invention by constraining students to focus on a small
range of questions or considerations during a single exercise. As Crowley
and Hawhee (2009) have described it,

Imitation exercises, if practiced in the way that the ancients practiced
them, can lead to a more finely tuned rhetorical method of reading and
listening. That is, when reading and listening rhetorically, we read and
listen as much for how a writer or speaker builds an argument with
words, sentences, paragraphs, and sections, as for what the writer or
speaking is arguing. (29)

The exercises presented in this chapter definitely emphasize this focus
on how a particular exercise is completed, as well as why it is completed
in a given fashion. One of the central goals is to illuminate how proce-
dural rhetoric can be developed and delivered to various readers rather
than simply received from some other agent. Some of these exercises may
have clearer purposes or more easily accessible means of achieving a given
outcome. Some of them are certainly simpler or more complex than oth-
ers. They all work rhetorically through blocks of code in words and often

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  153

resemble (but are distinct from) “sentences, paragraphs, and sections”
(Crowley and Hawhee 2009, 29), but they are as inherently rhetorical as
any conventional text.

While it is highly unlikely that a reader unfamiliar with programming
will complete this chapter feeling as though he or she has gained full cod-
ing proficiency or code literacy, there is nonetheless much to be explored
and considered regarding how even seemingly trivial decisions about in-
dividual procedural operations can have a significant impact not only on
how a program is executed or interpreted by a computer but also on how it
is understood to operate by a human reader. In turn, these considerations
can lead to more nuanced and comprehensive approaches to teaching
programming as a rhetorically informed composing activity.

Writing with Procedure

Computers function, fundamentally, on a very simple logical scheme
called Boolean logic (discussed in chapter 2). Boolean logic assumes that
all operations can be reduced to binary data, such as yes/no, on/off, true/
false, 1/0. Fortunately, it is possible to develop far more complex proce-
dures and computations that make use of combinatoric Boolean calcu-
lations. As some exercises below will demonstrate, a common means of
developing a program involves composing conditional statements that
check the status of one or more data points in order to express some par-
ticular set of operations; a readable example might involve checking the
day of the week in order to display the proper planning schedule. But be-
fore we turn to these logical structures and the nuances of conditions, we
first want to make sure that our programming environment is in a suitable
working order.

Perhaps the single most common initial program for novice develop-
ers, regardless of specific programming language being learned, is gener-
ally called “Hello World.” The program’s name derives from the text out-
put provided when it is run in order to show its writer that the program
has been successfully executed. A “Hello World” program often has two
components: first, a call to some command or function that will output
text; second, the text itself, that is, the “hello world!” message. As you
might guess, the syntax for each language looks either trivially or signifi-
cantly different from that of other languages, even for a program as minor
as this one.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

154  •  rhetorical code studies

Revised Pages

For JavaScript, the “Hello World” program typically looks like the fol-
lowing one-line statement, made up of one function and a single param-
eter to be passed through it:

alert("hello, world!");

What the above line of code effectively says is for the interpreter to ren-
der an “alert”—that is, to display a pop-up window—with the quoted text
("hello, world!") within the alert() function’s parentheses. The
semicolon at the end of the line tells the interpreter that the statement has
concluded, much like a period at the end of a sentence. One could replace
the text hello, world! with any other text, and the program should
work just as smoothly, so long as the input text is surrounded by quotation
marks. As a brief aside: the remaining exercises will not use the alert()
function, instead displaying output within a JavaScript console environ-
ment. The pop-up window that alert() creates is a helpful visual indi-
cator that the code has successfully been interpreted.

A program like “Hello World” provides the fundamental components
of a language’s syntax to begin orienting a novice programmer to the act
of composing in code. There’s a tremendous amount still to learn, but this
first step is meant to make everything else just a bit easier and more famil-
iar for future experiments in programming.

In order to make any program work, however, we need to understand
some essential concepts related to Boolean logic, as this is what allows
computers to function. Boolean logic is a logical system in which ev-
erything can be reduced to a binary: true or false, yes or no, positive or
negative, 1 or 0. Computer circuits make use of electron charges to parse
computational operations, with powerful circuits employing hundreds or
thousands of “logic gates” to determine the answers to specific calcula-
tions, using similar binary calculations to determine relations among in-
dividual points of data, for example, a AND b (output “true” if both vari-
ables’ values are “true”), a OR b (output “true” if either is “true”), a NOR
b (output “true” if both variables’ values are “false”), a NAND b (output
“true” if only one of the two is “true”), etc. While none of the exercises in
this chapter will tax a JavaScript interpreter, it is important to realize that
the logical considerations we will make here work as microcosmic reflec-
tions of far more robust and important programs; there’s nothing funda-
mentally different about the underlying nature of any software. We’ll just
be working at a much, much smaller scale in the following exercises.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  155

Learning JavaScript Syntax

Like any language, JavaScript has a number of syntactic and vocabulary-
related idiosyncrasies and nuances one must know in order to make ef-
fective use of the language. Many of these idiosyncrasies resemble those
of other, related languages. Some are unique to JavaScript. In either case,
recognizing the flexibility that any programming language has when
it comes to names, syntax, and so on is an important step in becoming
capable of employing that language for particular purposes. (Hopefully,
this basic concept sounds familiar to any rhetorician.) Almost all soft-
ware code works in combinatoric fashion, with discrete statements being
combined together to form more complex computations of data. The fol-
lowing two-line program serves as a basic example of combinatory logic.
First, we define a variable which has been named myVariable and is
provided a Boolean value of true. Second, we display a message that in-
cludes the current value of said variable.

Admittedly, there is not much to this program, but it does at least il-
luminate how we can see individual statements referring to—and in many
cases relying on—other statements in order to create more complex calcu-
lations and manipulations of data. This combinatorial approach is much
more impressive when we want to make use of a lot of data values together,
such as when we might want to display a list of volunteer names and rel-
evant contact information. We will see this sort of computational power
play out through the use of loops that perform similar (if not identical)
calculations on each member of a set of data. Before turning to loops,
however, it is important to examine how conditional statements work.

Conditional statements make use of Boolean logic to execute particu-
lar operations when certain parameters (conditions) apply. For example,
we could revise our two-line program (in practice script 5.1) to incorpo-
rate a single condition so as to display a message only when that condition
is met, as demonstrated in practice script 5.2. In this program, the condi-
tion begins on line 2 and ends on line 4. Due to its multiple-line scope,
the conditional operations are incorporated within a pair of curly brack-

Practice Script 5.1: Simple statement combination

Line Code

1 var myVariable = true;
2 "The value of myVariable is " + myVariable;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

156  •  rhetorical code studies

Revised Pages

ets, which denote their subordinate relationship to the condition in which
they reside.

Combinatorially, there are several kinds of statements occurring
in the above lines of code, and each one performs a very different func-
tion than the others. After the variable is defined in the first line, the sec-
ond line sets up a conditional statement that checks the value of a given
calculation,in this case comparing the value of myVariable to the ex-
pected value (true) provided after the two equal signs. (On a related note:
line 2 could be written with Boolean shorthand as: if (myVariable)
{ .) The brackets, opened at the end of line 2 and closed on line 4, serve
as containment markers for statements included between (within) those
brackets. What this means for our purposes is that any subordinate state-
ments, those provided within the brackets, will only be computed when
the conditional calculation is met, that is, when myVariable is set to
true. The statement on line 3 simply prints out a message that confirms
the expected value of myVariable. Of course, if the variable is ever given
a different value, then there will be no output message displayed. In its
current form, the program’s second condition—when myVariable is
NOT set to true, that is, when it is false—remains only implicitly in-
cluded as a consideration.

Thus, we could write a second statement that only appears when
myVariable is false; this would require a second condition to be
added to the program. Unlike our first if() statement, this second con-
dition could be anchored to the first, so as to suggest to any readers that
a relationship exists between the multiple condition checks we are mak-
ing. Specifically, in this case, it is a relationship of exclusive distinction:
if the first condition is not met, then the program executes any checks for
remaining conditional parameters. Here is an example of the expanded
program:

Practice Script 5.2: Conditional statement syntax

Line Code

1 myVariable = true;
2 if (myVariable == true) {
3 "The value of myVariable is " + myVariable;
4 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  157

With these added lines, several additional operations occur. The first—
else()—means that its subordinate statements will only be computed
whenever the original if() condition is not met, that is, when myVariable
is false. A similar output message is provided so that we know the current
value of myVariable (not that anything has been done to change it).

But, while these initial programs should successfully execute, neither
of them is particularly elegant, that is, the purpose for these programs is
quite simple, and for this purpose the provided code is not as clear or concise
as it could be, given how JavaScript works. Our initial program (in prac-
tice script 5.1) does its job much more concisely, but the conditional logic
demonstrated in practice script 5.2 and practice script 5.3 allow glimpses
into much more complex and elaborate computational statements, as we
will see shortly in combination with loops that allow for iteration through
sets of data.

Exercises in Repetition: Looping

As mentioned in the previous chapter, repetition can be an incredibly
powerful tool for programmers, provided that the repetition under discus-
sion works in support of broad principles relating to conciseness, clarity,
readability, and computational elegance. This holds true even if the output
of a program is otherwise identical; for the audience of developer readers,
code is generally less clear and comprehensive in its expression than it is
in its source text.

In order to make use of numerous and multiple computations of data,
programmers will frequently make use of loops to iterate through their in-
tended data sets. Loops facilitate concise composition of potentially com-
plex calculations that do not need to be entirely unique from other, similar
calculations. Just as we do not “reinvent the wheel” by developing entirely
new processes when the tasks in which we regularly engage are altered

Practice Script 5.3: Revised simple statement combination

Line Code

1 myVariable = true;
2 if (myVariable == true) {
3 "The value of myVariable is TRUE";
4 } else {
5 "The value of myVariable is FALSE";
6 }

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

158  •  rhetorical code studies

Revised Pages

slightly (e.g., driving a rental car instead of one’s own car), neither do pro-
grammers generally seek to create new algorithms for variations on exist-
ing ones.

The example program in practice script 5.4 is certainly longer than
those provided so far in this chapter, but that length is meant to reflect
the difference between looping and not looping through similar kinds of
data points. Those with programming experience will recognize it as an
incredibly inefficient program that is effectively impossible to maintain or
scale (such as if we wanted to display not letters of the alphabet but some
other set of data with multiple elements).

Practice Script 5.4: Non-looping iteration
through the alphabet

Line Code

1 output = "";
2 output += "a";
3 output += "b";
4 output += "c";
5 output += "d";
6 output += "e";
7 output += "f";
8 output += "g";
9 output += "h";
10 output += "i";
11 output += "j";
12 output += "k";
13 output += "l";
14 output += "m";
15 output += "n";
16 output += "o";
17 output += "p";
18 output += "q";
19 output += "r";
20 output += "s";
21 output += "t";
22 output += "u";
23 output += "v";
24 output += "w";
25 output += "x";
26 output += "y";
27 output += "z";
28 output;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  159

As should be quickly evident, the program in practice script 5.4 is
incredibly tedious to write, even if it is quite readable. The program per-
forms almost the same task twenty-six times, with the output message
(each letter of the alphabet) as the only variable component involved in
the program’s execution. Replacing this repetition with a loop not only
makes the program considerably shorter but also provides a shorthand
description of the nearly identical task to be completed in such a way as to
help the programmer audience understand how the task applies similarly
to each data point. Practice script 5.5 is a revised version of the program
in practice script 5.4. In this revision, the program makes use of a data
type called an array, which contains multiple elements that can be called
by their position within the overall array (starting from zero); that is, the
value of alphabet[2] is c. Then, the program makes use of a loop to it-
erate through each of the array’s elements and append its value to another
variable, output, the full contents of which are displayed once the loop
is completed.

In this looped example (practice script 5.5), depending on your fa-
miliarity with iteration, the program is either much easier or much more
difficult to read than the nonlooping version. To the user running this
program, the same output is displayed regardless of which version of the
program is provided.

JavaScript syntax for loop parameters involves three components. The
first is to define a variable (in this case, i) with an initial value that will
be modified over the course of the looping. The second component de-
scribes the condition(s) in which to continue iterating through the loop
(in this case, so long as the value of i is less than the length of alphabet,
which refers to the number of elements—here, single-character strings of
text—in the array variable). The third component describes what action

Practice Script 5.5: Looping iteration through the alphabet

Line Code

1 alphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i",
"j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u",
"v", "w", "x", "y", "z"];

2 output = "";
3 for (i=0;i<alphabet.length;i++) {
4 output += alphabet[i];
5 }
6 output;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

160  •  rhetorical code studies

Revised Pages

to perform upon each iteration (i++ is shorthand for “add one to the cur-
rent value of i”). Technically, there is no inherent relationship between the
length of the alphabet variable and the i counter variable: this particu-
lar program defines them as having the same “size” and thus the loop will
occur the same number of times as there are elements in the alphabet
array. The loop’s condition could be altered to provide some other bound-
ary value; this might (if the number is less than 26) result in displaying
only some of the letters or (if the number is greater than 26) displaying an
error message.

Similarly, we could change the order of the displayed elements, as in
practice script 5.6, where the values of alphabet are displayed in reverse
order; the loop—rather than starting from zero (the array’s initial element
position) and working toward the end—begins with the final element po-
sition and works back to the first.

We could also, however, randomize our various calculations to gener-
ate less predictable output. The following revision of our program makes
use of several built-in JavaScript methods that will generate a random
number for us (specifically, Math.random(), which returns a floating
number between 0 and 1) and then make said number into an integer (a
combination of the method Math.floor() and a multiplication of the
randomized floating number), so that we can successfully call one of the
array elements to be displayed.

The revised program in practice script 5.7 performs the same basic
function as the previous versions—printing elements from the alpha-
bet array—but we can no longer predict precisely which element will
be displayed at any moment. That said, there is still a described relation-
ship between the loop and its output: the range of potential elements is
influenced by the current value of the iterating i variable (e.g., the first

Practice Script 5.6: Looping iteration backwards through the alphabet

Line Code

1 alphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i",
"j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u",
"v", "w", "x", "y", "z"];

2 output = "";
3 for (i=alphabet.length-1;i>=0;i--) {
4 output += alphabet[i];
5 }
6 output;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  161

displayed value will not always be a, even though i initially equals zero,
as established in line 3). Unlike in the previous two versions of this pro-
gram, though, the arbitrary nature of the relationship between “iterator”
and “data being iterated” has been clarified through the randomization of
both the loop and its displayed output.

Exercises in Style: FizzBuzz

Among the most common “simple” looping programs written is “Fizz-
Buzz,” often as part of an initial programming job interview. The purpose
of “FizzBuzz” is ostensibly to take the numbers 1 through 100 and print
each of them out in order, unless a number is a multiple of three, in which
case it is replaced with the word “Fizz,” or if it is a multiple of five, in
which case it is replaced with the word “Buzz.” While “FizzBuzz” serves in
part as a quick means of determining whether an applicant possesses fun-
damental knowledge about programming, it also—as described briefly in
chapter 2—illuminates some important rhetorical information about the
way a given developer approaches relevant programming tasks. We can
gain a sense of how the author imagines each operation of the loop being
executed in accordance with a particular logic. We can recognize how the
author perceives relationships between various components of the loop.
We can comprehend basic considerations of readability for (what are usu-
ally) simple statements.

This is not to suggest that “FizzBuzz” should be seen as having some
incredible significance as a program; it has a limited scope and there is
only so much we can learn from such a genre. But we can learn from it,

Practice Script 5.7: Looping iteration through a randomized set of alphabet
elements

Line Code

1 alphabet = ["a", "b", "c", "d", "e", "f", "g", "h", "i",
"j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u",
"v", "w", "x", "y", "z"];

2 output = "";
3 for (i=0;i<Math.floor(Math.random() * alphabet.length);i++)

{
4 output += alphabet[Math.floor(Math.random() * alphabet.

length)];
5 }
6 output;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

162  •  rhetorical code studies

Revised Pages

and this information is primarily only available by examining the source
code for “FizzBuzz” rather than its output data, which optimally should
be identical to that of any other version of the program.

Practice script 5.8 and practice script 5.9 provide two versions of “Fizz-
Buzz” written in JavaScript, slightly different from those originally pro-
vided in chapter 2 as examples within table 2.2. If we run both of these
two versions, we can see identical output, but the logic of the two loops is
quite different. Practice script 5.8 allows for inclusive conditional checks;
that is, output could be provided whether one or two conditions is met. In
contrast, practice script 5.9 employs exclusive conditional logic, meaning
that only one output message will ever be displayed in response to a given
iteration of the loop. The ordering of the conditions in practice script 5.9
is also significant: the condition for i%15 (meaning “get the remainder,
or modulo, of i divided by 15”) is provided first, since multiples of 3 or 5
would otherwise trigger that output and thus create an “incorrect” version
of “FizzBuzz” in regards to its anticipated operation.

Despite their differences in logic, these two programs do not en-
compass the range of approaches—styles—by which one might write a
“FizzBuzz” program in JavaScript. Other versions might rework the ar-
rangement of the conditions used, others might employ entirely different
conditions altogether, others might or might not frame the loop within
the bounds of a function() like that these did so that the loop can be
executed again easily, and others still may emulate the syntax or style con-

Practice Script 5.8: "FizzBuzz" with inclusive conditional loops

Line Code

1 function iterate() {
2 for(i=1;i<=100;i++) {
3 if ((i%3==0) || (i%5==0)) {
4 if (i%3==0) {
5 output += "Fizz";
6 }
7 if (i%5==0) {
8 output += "Buzz";
9 }
10 } else {
11 output += i;
12 }
13 }
14 return output;
15 }
16 iterate();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  163

ventions of other languages with which they are more familiar. As a genre,
“FizzBuzz” offers a number of opportunities not only for rhetorical analy-
sis (e.g., of existing versions of the program) but also for inventive pos-
sibility when writing new versions of the program. This is not to suggest
that the program must always be rewritten in novel ways, just that it can be,
and attempting to work through how to write such a program can serve as
a useful exercise for us. The following examples of potential “FizzBuzz”
programs attempt to provide identical output to those in practice scripts
5.8 and 5.9, but they do so with trivial or significant differences in how
that output is generated.

The example in practice script 5.10 is a particularly inefficient means
of executing the “FizzBuzz” loop. Thanks to an array-specific method
(forEach()), the program does technically iterate through a set of
data—the elements of the myArray variable—but the “real” computa-
tional work of the program is hard-coded into the array elements. That is,
the program does not determine when to print a number or a string, but
instead prints the values entered directly by the author. There is no “dis-
covery” here of how the program will calculate each of its data points; the
output simply repeats the contents of the array in order. The resulting out-
put remains identical to practice script 5.8 and practice script 5.9, but the
source code of practice script 5.10 betrays its lack of any conventional el-
egance (whether using computational or stylistic definitions of elegance).
Despite its lack of elegance, the program nonetheless offers useful insight

Practice Script 5.9: "FizzBuzz" with exclusive conditional loops

Line Code

1 function iterate() {
2 for(var i=1;i<=100;i++) {
3 if (i%15==0) {
4 output += "FizzBuzz";
5 } else if (i%3==0) {
6 output += "Fizz";
7 } else if (i%5==0) {
8 output += "Buzz";
9 } else {
10 output += i;
11 }
12 }
13 return output;
14 }
15 iterate();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

164  •  rhetorical code studies

Revised Pages

into how an author could compose a solution that hinges on a particular
understanding of the program’s needs (a clear data set and the need to
display each item within that set). That the program cannot be easily mod-
ified, such as in terms of altering which data points are displayed as num-
bers or strings of text, is of incidental concern.

In contrast, practice script 5.11 makes use of multiple variables that al-
low for the test program to be adjusted as desired beyond the loop bounds
of 1–100 (with a potentially different scope of iteration), for new condi-
tions to be checked, or for different output to be displayed. The basic
exclusive conditional logic used in practice script 5.11 is nearly identical
to that of practice script 5.9, save that the exclusive nature of each check
must be more explicit, as the relationship between multipleA, mul-
tipleB, and multipleC—should the parameters for this “FizzBuzz”
program ever change—may not always be easily recognizable (if such a
relationship exists at all). Specifically, each of these conditions employs
Boolean logic to rule out multiple successful checks, so line 11 describes
checking whether i%multipleA equals the value of checkedMod, so
long as the same is NOT also true for i%multipleB and i%multipleC.

Practice script 5.11 is the longest of the looping versions of “FizzBuzz”
provided in this chapter, but its length does not make it necessarily un-
wieldy or unreadable. Due to its “scalability first” approach, however, it
does suggest a very different programming philosophy than those in prac-

Practice Script 5.10: "FizzBuzz" with static array elements

Line Code

1 myArray = [1, 2, "Fizz", 4, "Buzz", "Fizz", 7, 8, "Fizz",
"Buzz", 11, "Fizz", 13, 14, "FizzBuzz", 16, 17, "Fizz", 19,
"Buzz", "Fizz", 22, 23, "Fizz", "Buzz", 26, "Fizz", 28, 29,
"FizzBuzz", 31, 32, "Fizz", 34, "Buzz", "Fizz", 37, 38,
"Fizz", "Buzz", 41, "Fizz", 43, 44, "FizzBuzz", 46, 47,
"Fizz", 49, "Buzz", "Fizz", 52, 53, "Fizz", "Buzz", 56,
"Fizz", 58, 59, "FizzBuzz", 61, 62, "Fizz", 64, "Buzz",
"Fizz", 67, 68, "Fizz", "Buzz", 71, "Fizz", 73, 74,
"FizzBuzz", 76, 77, "Fizz", 79, "Buzz", "Fizz", 82, 83,
"Fizz", "Buzz", 86, "Fizz", 88, 89, "FizzBuzz", 91, 92,
"Fizz", 94, "Buzz", "Fizz", 97, 98, "Fizz", "Buzz"];

2 output = "";
3 myArray.forEach(function(i) {
4 output += i;
5 });
6 output;

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  165

tice scripts 5.8, 5.9, or 5.10, namely, that a program can and should be
written in such a way as to reduce any potential redundancy in future revi-
sions of that program. The passing of custom input data to the function
each time it is called allows for experimentation with the “FizzBuzz” algo-
rithm. Several input data points are established as passing to the function
in line 8 of practice script 5.11, with an example call of the function in line
22. While the majority of these “FizzBuzz” programs work, they are not so
easily adjustable for alternate data (that is, the loops themselves would be
rewritten rather than the values for individual variables).

As progymnasmata, what these “FizzBuzz” examples hopefully dem-
onstrate, more than anything else, is the power of rhetorical style in estab-
lishing an argument. It illuminates particular logics and decisions behind
a rhetor’s claims, even if the ultimate “point” may seem indistinguishable
from that of other arguments. While we often consider issues of style and
arrangement with an orientation toward audience reception and subse-

Practice Script 5.11: Modular/scalable "FizzBuzz" program

Line Code

1 checkedMod = 0;
2 multipleA = 3;
3 multipleB = 5;
4 multipleC = 15;
5 messageA = "Fizz";
6 messageB = "Buzz";
7 messageC = "FizzBuzz";
8 function iterate(minTotal, maxTotal, iterateAmount) {
9 for (i = minTotal; i <= maxTotal; i+= iterateAmount) {
10 if ((i%multipleA == checkedMod) && (i%multipleB != checked

Mod) &&
(i%multipleC != checkedMod)) {

11 output += messageA;
12 } else if ((i%multipleB == checkedMod) && (i%multipleC !=

checkedMod)) {
13 output += messageB;
14 } else if (i%multipleC == checkedMod) {
15 output += messageC;
16 } else {
17 output += i;
18 }
19 }
20 return output;
21 }
22 iterate(1, 100, 1);

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

166  •  rhetorical code studies

Revised Pages

quent action, we can attend equally to the means and meaningful mecha-
nisms by which a rhetor has established a particular line of reasoning or
how that rhetor has framed significant concepts or terms as a reflection of
his or her own comprehension of the issue at hand.

Exercises in Repetition: Object Creation

Just as iteration is an important component of computation and thus com-
putational rhetoric, so too is repetition—explicit and implicit—central to
many programming languages, especially object-oriented languages that
rely on class inheritance. “Class inheritance,” as described in earlier chap-
ters, refers to the way individual objects (bundles of data) are defined by
default and how they are capable of behaving through the employment of
general and specific computational procedures. Developers rely on class
inheritance principles for iterative object creation and modification in or-
der to avoid potentially overwhelming amounts of repeated code through-
out their programs.

JavaScript, however, is not technically an object-oriented program-
ming (OOP) language. Instead, JavaScript is “prototype-based,” meaning
that objects and object types have properties linked from their prototypes
rather than having properties copied (inherited) from classes; even so,
much of the language’s behavior emulates that of OOP languages (deasy-
doesit et al. 2018). It is possible, however, to define and develop object
classes for use in individual programs; further, a number of standard ob-
ject types are built in to JavaScript by default, including Math, String,
Array, and Object. As a result, JavaScript functions flexibly for pro-
grammers who both do and do not want the language to adhere strictly to
OOP principles.

Thanks to JavaScript’s flexibility, we are offered several opportunities
for rhetorical experimentation here. First, we can play with anticipation
through the development of a class, establishing attributes and methods
that will likely be used by any future instance of said class. Second, we can
examine repetition as it occurs through modification, of changes, across
instances of a concept, in data values and computational behavior. Third,
we have the potential to see how changes, whether significant or seem-
ingly trivial, can have striking effects on the arguments we make in and
through the code we write.

The code in practice script 5.12, inspired by the JavaScript example in
table 4.5 by saskatchewancatch et al. (2016), creates a class (called Cy-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  167

borg) and then creates two objects that inherit the class’s defined be-
haviors. Functionally, the program is quite simple, as the only behavior
defined initially is the establishment of a name attribute, based on the
myName argument passed to the class function when each new object is
created. Through the composition of this program, however, we can get
an initial sense of how effects of the work performed in developing a class
echo through the objects we create from that class. In this case, line 4 re-
turns text confirming each new object’s creation with a message that in-
cludes its custom name data when the greet() method is called, as in
line 8. While this is not a complicated operation, it nonetheless hinges on
the expectation that each new relevant object will have name data set upon
its initialization (in part so that the message will appear to the user as in-
tended). Any Cyborg-based objects without this variable are thus missing
a potentially vital component to their “existence” in the program and its
purpose.

To the nonprogrammer user, if another object using this class is cre-
ated with no name data, almost everything will function “correctly.” As it
stands, the only visible proof of some issue or bug with the program, out-
side the bounds of the source code itself, would be a blank space in the
middle of the message outlined in line 4, specifically, where this.name
is called and expected to be populated with its current value (set in line 2).
Not every space for error or unanticipated behavior (e.g., not planning for
an object to be created without a “name,” although it is possible to do so)
allows for the otherwise successful execution of a program, and the atten-
tion paid to such concerns reflects the values of the program’s authors as
much as does any explicit line of code. Unfortunately, these values may
not always be shared by or accessible to users of the program.

Practice script 5.13 provides more complexity in describing how the

Practice Script 5.12: Simple class construction and object initialization

Line Code

1 Cyborg = function(myName) {
2 this.name = myName;
3 this.greet = function() {
4 return "New cyborg, " + this.name + ", activated.";
5 }
6 }
7 myCyborg = new Cyborg("Version 1");
8 myCyborg.greet();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

168  •  rhetorical code studies

Revised Pages

Cyborg class and its resulting objects operate, although fundamentally
the program still makes use of simple string data stored in variables. Its
capabilities have expanded in regards to the use of data that is dynami-
cally generated when particular methods are called. In addition, the pro-
gram employs chaining and nesting to accomplish complex goals via com-
binations of individual methods with narrow purposes. In effect, the
program’s code anticipates (through its structure and logic) significant
and varied forms of computational repetition to be encountered when it
is run.

Chaining and nesting refer to distinct but related concepts in which
specific procedures are called by other procedures in order to accomplish
a different—generally more complex or comprehensive—goal than that

Practice Script 5.13: More complex class and object creation

Line Code

1 function Person(firstName) {
2 this.firstName = firstName;
3 }
4 function Machine(serial) {
5 this.serial = serial;
6 }
7 Cyborg = function(firstName,serial) {
8 Person.call(this,firstName);
9 Machine.call(this,serial);
10 name = firstName + "-" + serial;
11 birthdate = Date();
12 };
13 cyborg1 = new Cyborg("Grover", "1");
14 Cyborg.prototype.greet = function() {
15 return "Hello world, I am " + name + "! I was created on "

+ birthdate + ". Despite my first-person statements, I am not
quite self-aware. ";

16 this.ageUpdate();
17 }
18 Cyborg.prototype.ageUpdate = function() {
19 age = Date.parse(Date())-Date.parse(birthdate);
20 ageSec = (age / 1000) % 60;
21 ageMin = (age / 60000) % 60;
22 ageHrs = (age / 3600000) % 24;
23 ageDays = (age / 86400000);
24 return "I am " + Math.floor(ageDays) + " days, " + Math.

floor(ageHrs) + " hours, " + Math.floor(ageMin) + " minutes,
and " + Math.floor(ageSec) + " seconds old. ";

25 }
26 cyborg1.greet();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  169

of any individual component. Chaining refers to the practice of construct-
ing new procedures by calling multiple methods at once (thus building a
“chain”) without relying on variables to store the results of each individual
method. For example, line 20 involves the use of two Date.parse()
methods and a mathematical operation to calculate the value of a new
variable called age, which is then used as the basis for other calculations.
Rhetorically, chaining is not unlike writing a statement or series of state-
ments involving multiple instances of jargon: it might be possible to frame
the statement(s) in such a way as to incorporate definitions of each term,
but it is probable that any terms are explained elsewhere so as to improve
readability and relative conciseness of statements using those terms.

Nesting, meanwhile, refers to the use of procedures within (or subor-
dinate to) other procedures in order to complete a given task. Since some
tasks may be common across a set of important procedures, the tasks
may be modularized as methods and then called as desired without the
need for them to be rewritten for each larger procedure in which they ap-
pear. Line 17, for example, nests the ageUpdate() method within the
greet() method; ageUpdate() exists and can be called indepen-
dently, but its functionality is also an expected or desired component of
the operations comprising greet(). A potentially useful analogy from
classical rhetoric is the syllogism, in which premises are already accepted
in order for one or more conclusions to be reached. One or more premises
may be debatable, but the resolution of that debate generally exists out-
side the syllogism; its presence within the syllogism serves to facilitate the
completion of the larger argument. As part of completing the syllogism
(i.e., following its logic), one might question the strength or veracity of a
premise, but that process occurs internally as a kind of subroutine neces-
sary to understand and deliberate on the larger conclusion(s) at hand.

The program’s use of dynamically generated data further contributes
to its complexity. No longer can we assume that the same output will al-
ways be displayed when we call for it; instead, the program’s code takes
on a more (rhetorically) active role in its expression by generating data
not explicitly and statically entered by the program’s author (who may not
necessarily know or, in some cases, even accurately guess at what the gen-
erated data may be). This means that composing such a program inherently
involves anticipation of potentially diverse expressions emerging from its
use—what rhetoricians would recognize as multiple and different rhetori-
cal contexts—and the skilled developer must recognize at least some of
the bounds of that diversity constructed within their code. Admittedly,

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

170  •  rhetorical code studies

Revised Pages

the “diversity” relating to this program is relatively limited, as the “age”
of any Cyborg object created will always increase, its output will always
be displayed as a set of specific numbers, and it is possible to guess with
some accuracy what any given greet() message will display. As an initial
exercise in creating objects that make use of dynamic data, however, this
program offers a far greater range of possibilities than those in the previ-
ous progymnasmata.

Exercises in Arrangement: Bubble Sort

Modularity, as described earlier in this chapter, is an important compo-
nent of many programming languages, since it allows for a decrease in
explicitly repeated code. An even more important component for pro-
gramming, and for procedure in general, is order, that is, the arrange-
ment of particular procedural operations in the order necessary to pro-
duce a desired result. This identification of order as important is likely
obvious, given the examples already provided that make use of particular
procedural structures to induce certain outcomes. Similarly, the rhetorical
canon of arrangement refers to the skillful construction of arguments that
promote particular claims and offer proofs supporting those claims.

Fundamentally, there is little distinction between the arrangement of
arguments composed in conventional discourse and those composed in
code, save perhaps for the means by which important terms and concepts
are established. Specifically, conventional rhetors anticipate reaching a
sense of agreement or stasis with audiences about multiple facets of their
arguments (e.g., agreement on questions like the following: Was some-
thing done? What was done? Was it proper or appropriate to be done?).
In the majority of programming languages, where statements are over-
whelmingly imperative declarations, the notion of stasis differs; a given
programmer—within the constraints of a given language and a context of
hardware and software limitations—outlines the boundaries for the logos
that drives the program the programmer has written. These boundaries
can include establishing a particular variable as a certain type of data (e.g.,
an integer or a string of text), affording an object only certain attributes or
behaviors (e.g., the earlier exercise’s Cyborg output messages), and even
constructing procedural behaviors themselves.

As a result, arrangement takes on an entirely new dimension when
understanding programming as a rhetorical activity. If a program-
mer can rely entirely on the constraints of a language to perform the

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  171

work of definitional suasion, then the means by which a given concept
is communicated—which, for code, is the structure and order of one or
more relevant procedures—becomes that much more central and sig-
nificant to its effectiveness for human as well as machine audiences. Ob-
stacles to readability, computational efficiency, or scaffolding of calcula-
tions can all lead to drastically different outcomes than those potentially
intended by a program’s author(s).

One type of programming exercise that emphasizes procedural ar-
rangement is the “Bubble Sort,” which refers to a program that takes a set
(usually a list) of data points and reorders them according to a particular
system (such as arranging words in alphabetical order or arranging num-
bers from smallest to largest). The name “Bubble Sort” refers to the way
certain items in the set move toward the end of the set, resembling the rise
of bubbles in a liquid. The “Bubble Sort” program employs several com-
plementary procedural mechanics, including nested loops and multiple
operations relating to the storage and manipulation of data points within
a larger record. It is important for a programmer to comprehend how the
different procedures work in conjunction with one another and that they
do so in a precisely arranged fashion so as to effect the desired outcome.

As a related example, in her book Exercises in Programming Style, Lopes
(2014) demonstrates 33 different stylistic approaches to a computational
task known as “term frequency,” which conceptually resembles the “bub-
ble sort” procedure with some additional data sorted and displayed to the
user. Lopes defined the “term frequency” task as a trivial one: “[T]he com-
putational task in this book is trivial: given a text file, we want to produce
the list of words in the file and their frequencies, and print them out in
decreasing order of frequency” (2014, xiii). The procedure can certainly be
described simply, and—depending on the programming philosophy em-
ployed to compose it—may be realized simply as well. However, as Lopes’
book illuminates the significance of style, and as this exercise attempts
to demonstrate regarding the arrangement of data and logic in two sty-
listic approaches, we can learn a great deal about a program as well as its
author(s) when we examine why and how certain perspectives on proce-
dural rhetoric are applied to the activity of composing this program (or
other programs, of course).

The example “Bubble Sort” shown in practice script 5.14 employs two
loops, one nested in the other, to successfully iterate through the data to
be arranged properly (the Array myData in Line 1). Further, a conditional
statement on line 6, within the innermost loop, initializes manipulation

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

172  •  rhetorical code studies

Revised Pages

of Array data via a temporary variable that momentarily stores the original
value of each element as it gets altered in the course of the loop.

This version of the “Bubble Sort” exercise can be useful as a relatively
transparent demonstration of one logic system applied to the act of sort-
ing. After all, there are several “moving parts” (figuratively speaking) that
must work together for the data to be modified and reordered correctly.
It may be useful to compare this sort of program to a more recognizable
rhetorical example: the relationship between major and minor premises
within an enthymeme or syllogism. While it may be possible to use either
premise independently for other purposes, it is necessary that an audience
understand the significance of a rhetor’s effort to connect the premises so
as to successfully reach the desired conclusion(s) stemming from them.

“Bubble Sort” as a rhetorical exercise here, however, is made unneces-
sary in terms of the practical need for it in regards to JavaScript. That is, Ja-
vaScript possesses a native method for precisely the kind of automated ar-
rangement effected above, and the method—called sort()—works for
numbers or text strings, as demonstrated in lines 1 and 2 of practice script
5.15. The method can be chained with another method, reverse(), to
provide a descending result (instead of the default ascending order), as
demonstrated in line 3 of practice script 5.15. What the native methods
obfuscate is the specific procedural logic involved in the sorting we, as
programmer-composers, call on in this program as compared with that
of the previous example, which allows for a more varied and nuanced ap-

Practice Script 5.14: Simple "Bubble Sort" program

Line Code

1 myData = [2, 5, 9, 6, 3, 1, 8, 4, 7];
2 function mySort(input)
3 {
4 for (j = input.length-1;j >= 0; j--) {
5 for(i=0;i < input.length-1; i++) {
6 if (input[i] > input[i+1]) {
7 tempData = input[i];
8 input[i] = input[i+1];
9 input[i+1] = tempData;
10 }
11 }
12 }
13 return input;
14 }
15 mySort(myData);

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  173

proach to sorting should we desire a less conventional ordering system for
our data.

Clearly, the two approaches to “Bubble Sort” suggest very different log-
ics, with one keyed in to the affordances of JavaScript (and thus “obscur-
ing,” to some readers, the means by which a list is sorted while clarifying
it to others) and the other assuming a need to develop an explicit sorting
apparatus for readers—and, perhaps, the author himself or herself—to
understand how one can achieve a particular goal.

Exercises in Invention: enthymemeGenerator.js

We can combine the work performed thus far in the course of these ex-
ercises to develop even more nuanced and complex programs. Such pro-
grams can allow us to anticipate new and different rhetorical contexts than
those initially established within the parameters of the previous exercises.
In this exercise, we will focus on the complementary effects of exploratory
and combinatoric invention as we create a program whose objects per-
form a number of meaningful writing-related tasks.

Specifically, this program will allow for the creation of distinct objects
that can store, manipulate, and output data, which in this case will be fo-
cused on the creation of a short enthymemic puzzle or game. (I should
note that the logic generated semirandomly by this program will not al-
ways be clear, so the displayed enthymemes should be considered within
the logical “world” boundaries of their related premises and conclusions.)
Generally speaking, the program is not overwhelmingly complex, but in
relation to the previous exercises presented in this chapter, it serves as
a suitable capstone to this initial investigation of programming-based
progymnasmata.

First, it is important to consider what such a program requires me-
chanically. As initially envisioned, this program has several intercon-
nected components or tasks with distinct purposes:

Practice Script 5.15: "Bubble Sort" with JavaScript sort() method

Line Code

1 myData = [2, 5, 9, 6, 3, 1, 8, 4, 7];
2 myData.sort();
3 myData.sort().reverse();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

174  •  rhetorical code studies

Revised Pages

	1.	 Definition of objects to be initialized, which involves:
	 a)	Definition of data lists that will serve as enthymeme elements
	b)	Description of behaviors for sorting data list elements
	 c)	Description of behaviors for displaying generated arrange-

ments of enthymemes
	d)	Description of behaviors for storing generated enthymemes

	2.	 Initialization of object(s)
	3.	 Operation of object methods that generate specific enthymemes

None of the involved components is complicated in and of itself, but it
nonetheless matters that each can be identified for its contribution to the
goal of the overall program and so that we, as the program’s authors, can
attend to the relationships each has with the others in anticipation of us-
ers engaging the program.

Second, it is also important to remember that this program could be
written in a variety of ways, and the approach taken below is hardly the
only—or in some ways the best—means of accomplishing the goals de-
scribed above. Curious readers may find it fruitful to experiment further
with their own version of the program or to tweak the version provided
here to understand more clearly how the differences in approach can com-
municate meaning through procedure in a variety of noteworthy ways.
How might seemingly trivial, or clearly major, changes to individual
procedures impact the range of expressions possible when running the
program?

With these questions in mind, we can turn to application: How might
such a program be composed in code? The version provided below em-
ploys the concepts outlined in this chapter’s earlier exercises as well as
introducing several new principles and methods (native to JavaScript) to
the program. Hopefully, this sample version demonstrates a recognizable
foundation on which to build while illuminating new and different efforts
to achieve the program’s goals.

This version of the program suggests several key concepts as integral
to the generation of enthymemes. The logic used to generate a given en-
thymeme reflects a set of values and means of engaging the world (in this
case, other potential programmers, the author’s knowledge of the JavaS-
cript language, and so on). The program’s argument occurs enthymemati-
cally, with a number of implicit premises accompanying the explicit lines
of code, including the following: this is one way to build an enthymeme;
this is a preferable way to build an enthymeme; the enthymemes it gen-
erates are meaningful; the user for this program is interested in working
through the logic of a given enthymeme.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  175

Just as it is not a guarantee that a given reader of the code or user of
the program will accept—or is interested in pursuing—any of the above
premises, it is within the author’s power to make one or more of these
argumentative premises stronger or clearer so that a reader is more likely
to recognize, understand, and accept them, beyond the assumed “accep-
tance” of constraint accompanying all software use (that is, the recogni-
tion of software- and hardware-based constraints on what is possible with
a given program). Accordingly, the program code sets up several central
parameters that anticipate its range of potential expressions: enthymemes
consist of two sentences, the enthymemes have at least two points of
thematic relation, each sentence grammatically is structured as subject–
transitive verb–object, and—presumably—the logic of each enthymeme is
accepted by the reader.

First, the example to be discussed is provided in practice script 5.16.

Practice Script 5.16: Enthymeme generator built on earlier object creation code

Line Code

1 noun = ["apple", "banana", "canteloupe"]; // Expand these
vocabulary lists for more interesting results!

2 verb = ["act", "bellow", "cry"];
3 adjective = ["angry", "beaming", "cold"];
4 quantity = ["all", "few", "half"];
5 function Person(firstName) {
6 this.firstName = firstName;
7 }
8 function Machine(serial) {
9 this.serial = serial;
10 }
11 Cyborg = function(firstName,serial) {
12 Person.call(this,firstName);
13 Machine.call(this,serial);
14 name = firstName + "-" + serial;
15 birthdate = Date();
16 return "New cyborg, " + name + ", activated.";
17 };
18 Cyborg.prototype.singularize = function(term) {
19 iesLetters = "aeou";
20 esLetters = "hosx";
21 if (term.charAt(term.length-1) == "y") {
22 if (iesLetters.indexOf(term.charAt(term.length-2)) == -1) {
23 temp = "";
24 for (i = 0; i < term.length-1; i++) {
25 temp = temp + term.charAt(i);
26 }
27 term = temp + "ies";
28 }
29 else {
30 term = term + "s";

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Practice Script 5.16: (continued)

31 }
32 }
33 else if (esLetters.indexOf(term.charAt(term.length-1)) != -1) {
34 term = term + "es";
35 }
36 else {
37 term = term + "s";
38 }
39 return term;
40 }
41 Cyborg.prototype.randomize = function(list) {
42 randomTerm = list[Math.floor(Math.random() * (list.length))];
43 return randomTerm;
44 }
45 Cyborg.prototype.enthymemeGenerate = function() {
46 amount = this.randomize(quantity);
47 subject1 = this.randomize(noun);
48 subject2 = this.randomize(noun);
49 action = this.randomize(verb);
50 directObject = this.randomize(noun);
51 this.sentence("major", amount, subject1, subject2, action,

directObject);
52 this.sentence("minor", amount, subject1, subject2, action,

directObject);
53 return output;
54 }
55 Cyborg.prototype.sentence = function(type, amount, subject1,

subject2, action, directObject) {
56 if (type == "major") {
57 myQuantity = amount;
58 mySubject = this.singularize(subject1);
59 myVerb = action;
60 directObject = this.singularize(directObject);
61 majorPremise = myQuantity + " " + mySubject + " " + myVerb +

" " + directObject + ".";
62 majorPremise = majorPremise[0].toUpperCase() + majorPremise.

substring(1);
63 output = majorPremise;
64 } else if (type == "minor") {
65 mySubject = subject2;
66 myVerb = this.singularize(action);
67 directObject = this.singularize(directObject);
68 minorPremise = mySubject + " " + myVerb + " " + directObject

+ ".";
69 minorPremise = minorPremise[0].toUpperCase() + minorPremise.

substring(1);
70 output += " " + minorPremise;
71 }
72 }
73 cyborg1 = new Cyborg("Grover", "1");
74 cyborg1.enthymemeGenerate();

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  177

Outside of the word lists in the first several lines of the program (each
of which is purposefully short so as not to double the overall length of this
text), much of the first quarter of the provided code may look especially
familiar, since it involves a construction of the Cyborg object type so that
readers can build on their program drafts from earlier exercises. That code
is included first here to provide context for the code to come. Unlike many
programming languages whose code texts are compiled and executed, Ja-
vaScript interprets its lines, so the order of composed procedures matters
(that is, the program will not operate successfully unless we first establish
variables that are referenced elsewhere before we can write the code that
makes those references).

A new set of methods appended to the existing code lines provides
the necessary functionality for generating the randomized enthymemes
for this exercise. There are three distinct but connected methods—
singularize(), randomize(), and sentence()—that are all acti-
vated when the “umbrella” method, enthymemeGenerate(), is called.
In each of these methods, a particular procedure produces a key compo-
nent of the enthymeme that is ultimately generated and displayed; it is
worth noting that in its current form, the program creates a “categorical”
enthymeme, meaning that the expected conclusion to be drawn is one
that relates the subject of the minor premise to the subject of the major
premise.

Of the integral functions used in this program, the randomize()
method (lines 41–44) generates a random number, using Math.floor()
and Math.random(), and then pulls the array element of that num-
ber from the appropriate list (as established when the method is called).
Its nature as nonspecific to any particular type of term (noun, verb, etc.)
means that it can be used to populate any grammatical component for
these premise statements. The singularize() method (lines 18–40)
similarly performs in a generic manner, although its name suggests its use
is specific, as singularizing a noun often appears opposite to singulariz-
ing a verb; in fact, when this singularize() method is used for nouns,
it actually pluralizes them by appending characters (e.g., “s” or “es”) to
words. The specific appended characters are determined based on the fi-
nal characters of a given word, established in lines 19–20 and checked in
the conditional statements beginning on line 21. Thus a word ending in
“y” will have that “y” replaced with “ies” unless the letter just before “y”
is included in the string on line 19 (the variable iesLetters), in which
case the word will be altered to have an “s” after the “y” character. While

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

178  •  rhetorical code studies

Revised Pages

the method’s name is arbitrary, there is nonetheless a clear implication for
how a reader is expected to consider its function and purpose, and admit-
tedly there is significant room for misinterpretation, in terms of its use for
nouns, as a result.

In contrast, sentence() has a potentially more straightforward
workflow that may be easier to follow despite its more complex use of
method chaining to construct its output. Some of the data used is pro-
vided when the method is called (such as in the enthymemeGener
ate() method, in lines 51–52), while others are computed based on that
initial input, such as in regards to the “singularized” version of a given
term or whether a major or minor premise is being constructed. At the
end of each premise’s condition, the appropriate variables are arranged
and formatted, in a very particular way, into a sentence that is then dis-
played to the user.

As with the other exercises, any or all of these functions could be struc-
tured in a variety of ways for drastically different results, each demonstrat-
ing a different logos of how the program’s author approaches understand-
ing and communicating important information about the creation and
interpretation of enthymemes. The sample program, in its current form,
makes a particular argument about what an enthymeme is, how it works,
and what a user—as well as a potential contributing developer—is ex-
pected to think about the use of enthymemes. (Admittedly, some of these
expectations may not be particularly meaningful in the context of this
brief exercise.) A program that further randomized the provided compo-
nents of an enthymeme, such as a conclusion as well as a premise, might
demand a very different set of functions to achieve that goal. Similarly, a
program that generated different types of enthymemes, or even different
approaches to phrasing enthymeme elements, might call for very different
sets and arrangements of sentence components.

Ultimately, this exercise is as much an attempt at broad reflection on
one’s invention practices as it is the specific application of particular pro-
gramming concepts to develop an enthymeme generator program. In
any given text, how much do we lean on particular avenues of establish-
ing meaning as opposed to seeking out new or alternate ways of making
arguments? How do we attempt to help readers understand not only an
intended point or goal but also the logic behind our decisions? How much
do we identify certain principles to strive for, and how do we go about at-
tempting to realize those goals? These questions and others emerge as
a result of such an exercise, and they can serve as valuable heuristics for

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Composing in Code  •  179

reading the composing work we do in any medium, although, thanks to
its inherently procedural qualities and hybrid reader/interpreter consid-
erations, code may well offer novel dimensions for the responses we de-
velop to our reflective questions.

Conclusions

The exercises presented in this chapter attempt to demonstrate a variety
of key rhetorical concepts that inform composing practices across genres,
modes, and media and reflect composing in code specifically. While pro-
gramming as a form of meaning making involves a functional need to
compose code in such a way as to be readable (interpretable) by the com-
puter, it is nonetheless also a form of making and communicating mean-
ing to human audiences (including potential collaborators or even some
users). Accordingly, we can approach composing in code as a rhetorical
activity, allowing us to experiment with the development of arguments
in code just as we would in other media. In addition, we can potentially
investigate more effectively how professional and amateur programmers
compose their work with rhetorical strategies (un)consciously in mind.

To be clear, these exercises barely scratch the surface of the potential
range of tactics a rhetor might employ in code or in another medium.
Nonetheless they suggest what I hope is a suitable variety of consider-
ations regarding the importance of treating code as an important and
inherently rhetorical form of communication. If as rhetoricians we want
to understand and inform the effective composition of meaning through
code, or if as programmers (professional or amateur) we want to develop
approaches or workflows to coding that are accessible as well as efficient,
it behooves us to attend more closely to the relationships between the pro-
gymnasmata of classical rhetoric and the exercises of contemporary pro-
gramming texts and hiring processes, as together they can tell us a great
deal about the forms of meaning making that code authors and readers
alike are expected to recognize, understand, and engage in particular ways
for similarly particular purposes.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

181

chapter 6

Conclusions

I undertook this project to pursue a critical examination of the relation-
ship between the rhetorical possibilities of algorithmic computation and
the computational qualities of rhetoric, taking advantage of opportuni-
ties created by current popular interest in code. Scholars interested in
the means by which digital technologies enable and constrain particular
ranges of action could similarly offer novel insights into our understand-
ing of rhetoric by considering how the relationship between rhetoric and
computational logic can offer us insight into the workings of both. It is
not enough merely to identify rhetoric “as” computational, or computa-
tion “as” a form of rhetorical communication; the recognition of the one
as part of the other is meant to serve as an introductory foray into experi-
mentation with the potential action(s) that can be undertaken as a result
of this knowledge. What does recognizing computation or code as rhe-
torical get us? How can we better proceed with investigating and making
meaning in the twenty-first century if we attempt to inform practices of
composing code with rhetoric? How might a more procedurally oriented
or focused theory of rhetoric affect our approaches to knowledge creation
and communication with networked technologies?

By teasing out some of these possibilities through identifying the cul-
tural influences on and implications of algorithmic computation—in an
abstract sense, in specific cases, and in the writing classroom—I hope to
provide a point from which rhetoricians can incorporate computational
technologies more fully and naturally into the body of objects of serious
rhetorical study and composition. Further, I hope that scholars and prac-
titioners outside the field of rhetoric may also find this project valuable
for improving education and practice relating to software development by
considering what rhetoric has to offer computer science and professional
(and, for that matter, amateur) programming activities.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

182  •  rhetorical code studies

Revised Pages

The field I have described is not meant to serve as a means of answer-
ing the questions asked by those studying digital rhetoric or software, but
instead as a space in which to engage issues emerging from parallel and
convergent inquiries undertaken by scholars in these disciplines, as well
as in disciplines that may not initially seem clearly related or impacted by
the intersection of rhetoric, software, and code.

Rhetorical Code Studies Thus Far

As a field, rhetorical code studies can best be defined as the convergent
space shared by the disciplines of rhetoric, software studies, and criti-
cal code studies. There has been significant and influential scholarship
in each of these areas that conceptually overlaps with the scholarship in
each of the others to date, and in the past several years in particular there
has been an increase in explicit cross-disciplinary acknowledgment or en-
gagement among scholars in these disciplines. This boundary crossing
is particularly notable in regards to rhetoric, given the continued expan-
sion of our understanding of “digital rhetoric” as an area worthy of seri-
ous study. Most rhetoricians interested in digital media, however, remain
focused on the end-user interfaces (i.e., software programs) most com-
monly used for purposes of invention and communication rather than on
the software code languages and “hidden” interfaces that facilitate sub-
sequent end-user actions. A turn to code enables rhetoricians and critics
of software to explore the possibilities of meaning making among soft-
ware developers as well as the meaningful interactions they facilitate for
broader sets of users.

At the center of rhetorical code studies is the algorithm, and specifi-
cally the algorithm as a way to understand the creative processes we en-
gage in regularly as part of our humanistic activity. While algorithms are
conventionally thought of in terms of engineering, mathematics, and
computer science, algorithmic procedure has its roots in the day-to-day
activities humans have engaged in for millennia. Building upon this his-
tory of algorithmic procedure as a description of fundamentally creative
processes, I explored in chapter 2 the relationship between algorithms
and enthymeme, the central mechanism with which rhetorical arguments
are delivered to audiences. Specifically, an enthymeme functions algorith-
mically in that it implicitly demands some computation on the part of an
audience: the completion of an incomplete syllogism. This demand en-
gages that audience in the rhetorical act, but only so long as the audience

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Conclusions  •  183

recognizes and performs the computation of the rhetorical algorithm of-
fered to it.

Conversely, algorithmic procedure as present in (and communicated
through) software code makes use of enthymematic reasoning to anticipate
how that code will execute as part of a user’s activities. In other words, de-
velopers provide implicit arguments, using what Lanham (2003) referred
to as tacit persuasion patterns, to induce other developers to engage in spe-
cific styles of development, writing code that functions in particular and
meaningful ways. The logical structures of code enable multiple means of
responding to a given exigence, so what becomes important is how de-
veloper audiences interpret and complete the code-based enthymemes
provided by their colleagues. This importance can be viewed across
multiple scales of code development, from individual function logics to
larger concerns of data iteration (as demonstrated in that chapter through
the specific examples of the FizzBuzz test, the quine, and the HashMap
concordance).

Conventional forms of discourse play a significant role in code-
related rhetoric, as software developers converse with one another about
both their preferred means of accomplishing specific tasks in code and
their arguments for why other developers should follow similar ap-
proaches to coding. This sort of discourse can be most easily observed
in the discourse of large open source software communities, in which
hundreds or thousands of developers engage in collaborative software
program development over extended periods of time. These develop-
ers often have varied levels of expertise and familiarity with the relevant
programs and languages used to make those programs, so the conversa-
tions that take place within a given community provide helpful insight
as to how particular developers attempt to influence their fellow contrib-
utors. In chapter 3, I examined the discourse of the development com-
munity for the Mozilla Firefox web browser. A massive and popular open
source software program, Firefox has been collaboratively developed
for seventeen years by thousands of professional and amateur program-
mers. As a result, the range of conversational topics, and the range of
rhetorical appeals used in relation to those topics, is broad, even when
considering the relative scope of discussion is “narrow” (i.e., focused on
the development of a single program). Perhaps unsurprisingly for rheto-
ricians, the Firefox developers engaged in practices making use of ap-
peals to ethos and pathos as much as, if not more than, logos, suggest-
ing that decisions about development practices are not focused so much

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

184  •  rhetorical code studies

Revised Pages

on computational efficiency or optimization as on personal preferences
and stylistics as well as group dynamics.

In chapter 4, these considerations were extended into the code texts
and development practices themselves. I examined several particular
types of composition process and rhetorical strategy present in Firefox’s
code at various points in its history (as well as in its current form). Each
of these examples showed a fundamentally rhetorical approach to writ-
ing in and through code, in regards to composing both for a developer
(colleague) audience and with colleague collaborators on a shared set of
texts whose constraints influence the work—rhetorically meaningful code
construction—undertaken by involved members of the community. For
Firefox, as with most collaborative development projects, this involves
additive practices of code composition, reflecting the back-and-forth of
conversational discourse (wherein one speaker responds to, but does not
eradicate, the statements of others). This fundamentally rhetorical quality
of discursive communication as demonstrated in code is extremely signifi-
cant, as it allows scholars to observe how software code languages facili-
tate rhetorical activity between human beings and not simply mechani-
cal processes for, or in, computer technologies. I pointed to examples of
rhetorically powerful arrangement, such as anaphora, climax, and exer-
gasia, as recognizable strategies that imply specific ways of solving rel-
evant problems and manipulating data as the optimal means of achieving
those goals. While it would be inaccurate to claim that most (if any) of
the Firefox developers were consciously attempting to induce change with
these strategies, their use nonetheless has implicit effects on the developer
audiences who engage those texts and practices.

The programming-oriented progymnasmata serving as the focus for
chapter 5 offer some initial, and hopefully useful, perspectives on the act
of programming as rhetorically significant and informed composing. While
those exercises do not offer a comprehensive engagement with the flexibil-
ity of programming or of basic rhetorical theory as a means of developing a
complex program, they nonetheless demonstrate the possibilities available
to scholars and professionals interested in rhetoric or in software develop-
ment as a form of meaningful communication. This recognition of the act’s
inherent rhetoricity is meant to complement the preceding chapters’ focus
on analysis of existing texts and practices so that we, as a collected body of
scholars and practitioners, can more effectively turn toward improving rel-
evant rhetorical and programming pedagogy and further the push for com-
putational and procedural literacy, broadly speaking.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Conclusions  •  185

My efforts here have been bolstered considerably by the spur of schol-
arship in the past several years that has brought together rhetoric and
software in significant and interesting ways. Most notably, Brown’s (2015)
investigation of the “rhetorics of software” serves as the most currently
comprehensive effort to connect rhetorical criticism with the study of
software. Building on a foundation of rhetoric as well as software studies
and media criticism, Brown has performed a set of insightful investiga-
tions into how we might, and could, understand questions of ethics and
hospitality in software and software-mediated contexts. As Brown has ar-
gued, “Digital rhetoricians can and should be participating in discussions
of computation, and they should do so both by bringing rhetorical the-
ory to bear on software and by rethinking rhetorical theory in light of the
unique attributes of computational media” (180). Similarly, Beck (2016)
offered a number of questions pertinent to the rhetorical study of software
and code:

[H]ow might a rhetorical code studies treat social and cultural theo-
ries alongside non-human theories of machinic contexts? Addition-
ally, how might focusing scholarly attention toward rhetorical and
theoretical treatments of computer algorithms open interdisciplinary
conversations and relationships? How might such perspectives attract
complementary and divergent views? Since algorithms affect changes
in machine and human behaviors, as the two scenarios that frame
this article illustrate, how might those allied with rhetoric and writing
studies gift a path toward greater knowledge about the formation, cre-
ation, and use of computer algorithms in myriad digital and scholarly
spaces? (n.p.)

For Beck, the question of agency is critical, especially as it might contrib-
ute to rhetoricians’ experiments in algorithmic and code-based compo-
sition. Her questions regarding the impact of nonhuman activity in the
construction and dissemination of digital texts are all the more intriguing
given the increasing use by developers of script tools, bots (such as Mozil-
la’s patch testing software or Wikipedia’s swarm of automated editors),
and so on; if we cannot afford to ignore the role of such software agents in
our digital composing practices, then how might we re-evaluate what we
(and they) are doing when we collaboratively compose software?

Ultimately, these examinations of software, code, and code-related
discourse as rhetorical and significant forms of meaning making serve

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

186  •  rhetorical code studies

Revised Pages

to demonstrate the importance of rhetorical code studies for twenty-first-
century studies of rhetoric and digital media. In particular, the potential
for code to facilitate and constrain ranges of action reflects the dynam-
ics of rhetorical invention and delivery, albeit in a set of forms that have
to date been underexamined in relation to the significant impact digital
technologies (and thus developers’ decisions) have on our day-to-day ac-
tivities. Such an examination would benefit rhetoricians, software critics,
and code critics alike: just as we can understand more clearly the cultural
influences on, and consequences of, software practices, so too can we ex-
plore more fully how we attempt to communicate meaningfully with one
another in and through those practices. In short, we have an opportunity
to approach investigating the ranges and types of actions we attempt to in-
duce in various audiences (of developers as well as of users) for particular
purposes.

Assessing Computational Action

If the goal of rhetoric is to facilitate action, and if this action is made pos-
sible by the inherently procedural nature of rhetoric, then computation—
which similarly operates through procedural expression—is capable of
similarly facilitating some form of action of value and interest to rhetors
for rhetorical ends. This is not a logical given (since computation may not
always be used for such purposes), but it is possible to recognize that, and
how, computation is action-oriented toward many of the same contingent
and situated ends as rhetoric.

One might accurately argue that computation and rhetoric differ in
that the former, unlike the latter, cannot engage in any sort of explicitly
discursive give-and-take with an audience, and neither can the logic of a
computational statement be debated by a machine (it instead will either
be accepted as valid or refused as invalid). But the structure and intended
effects of both a computational procedure and a rhetorical procedure are
often closely aligned if not parallel in nature. In essence, this is because
computation does not occur without context; there is a reason for the
expression of a given procedure, and that reason is often to accomplish
some meaningful outcome for various explicit and implicit purposes. As
demonstrated in previous chapters, many professional software devel-
opers recognize that their work has these meaningful qualities, but they
rarely engage in substantive discussion thereof, partly because of a lack
of engagement with a humanistic (and specifically rhetorical) vocabulary

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Conclusions  •  187

that would help clarify how those procedural development practices func-
tion in these ways. Scholars interested in the rhetoric of code can help
bridge this gap between critical analysis and pragmatic practice, but it re-
quires an ability not only to translate rhetorical principles to professional
and public audiences but to help those audiences assess the possibilities of
rhetoric communicated through code.

Bogost (2007) addressed such a contextual concern as part of an ex-
amination of the potential ways to assess procedural rhetoric, especially
in relation to video games. For Bogost, assessment was crucial because it
“always requires an appeal to an existing domain. An assessment equates
one form of symbolic action with another form of symbolic action through
some mediating measurement” (2007, 322). In other words, the meaning
of a particular set of behavior is given a second set of meaning(s). Bogost
specifically described the assessment of game play as “a form of proce-
dural symbolic action [. . .] compared with desirable behavior within an
institution, via material measurements like written texts or job perfor-
mance” (2007, 323). For computational action, rhetorical assessment pro-
vides a means of outlining the suasive influence of particular algorithmic
procedures on human behavior as well as on the construction of machinic
behavior (as a result of influenced human activity). For rhetorical action,
computational assessment offers a perspective focused on the structure(s)
of anticipated activity to be executed through and as a result of a given at-
tempt at meaningful suasion. Bogost (2007) suggested that “procedural
rhetorics can [. . .] challenge the situations that contain them, expos-
ing the logic of their operations and opening the possibility for new con-
figurations” (326). In other words, examining and assessing algorithmic
procedures can not only shine light on how they work, or toward what
ends they function, but also how other suasive procedures might be con-
structed for other purposes and audiences.

But by what metrics can the aforementioned types of assessment be
evaluated? It is admittedly easier for rhetoricians to consider the ways in
which computational procedures—especially as code texts—might be
read as meaningful communication; Burkean dramatism, as described
by Burke (1962), even offers one specific means of approaching com-
putation with an algorithmically oriented school of criticism. Reading
code as rhetorical text (while using an interpretive lens such as Burke’s
pentad) offers new possibilities of understanding symbolic action com-
municated through forms that have yet to be explored, mostly due to the
long-standing definition of code as machine-focused and nonmeaningful

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

188  •  rhetorical code studies

Revised Pages

instructions. Admittedly, Burke argued that meaning was limited to hu-
man communication (with nonhuman activity instead reflecting nonsym-
bolic “motion” after Hobbes; see Burke, 1962, 135–37), but scholars in
more recent decades have addressed the possibilities of symbolic action
with more nuanced consideration. The pentadic ratio described by Burke
even functions as a kind of algorithmic procedure not unlike the classi-
cal enthymeme, with a Burkean critic reaching an interpretive conclusion
based upon the pairing of certain dramatistic elements related to a given
rhetorical act or event.

Another useful framework for rhetorically computational assessment
is Shipka’s (2011) task-based model for evaluating multimodal composi-
tion, since it emphasizes the processes and procedures of rhetorical com-
munication through multiple means, as well as modes, of constructing
meaning (even if not necessarily specific to digital media). When using
Shipka’s structure, “questions associated with materiality and the deliv-
ery, reception, and circulation of texts, objects, and events are less likely
to be viewed as separate from or incidental to the means and methods of
production, but more likely as integral parts of the invention and produc-
tion process” (2011, 101). Shipka’s framework can apply as easily to code
and the technologies that facilitate it as it can to any other form of compo-
sition; within such a structure, the goal is not to achieve one unified end
but to allow students to discover their audience and purpose for a given
task as well as the optimal means of achieving that purpose. As Shipka
(2011) observed, recognizing the equal importance of any and all “modes,
materials, methods, and technologies” that may used as part of a given
rhetorical activity is integral to their skillful use in moving an audience to
engage in some form of action (85). Accordingly, a rhetor’s awareness of,
and ability to reflect upon, his or her employment thereof is a significant
component of any effort to assess the quality and success of using compu-
tation successfully for rhetorical purposes.

Focusing on assessment via the tasks involved in an act of rhetorical
composition is also effective since a task-based model calls attention not
only to the procedural nature of the invention process but, more impor-
tantly, to the explicit evaluation of the actions a rhetor means to facilitate
through his or her suasion. That is, while any assessment of rhetorical
composition is going to include an examination of how and why a rhetor
attempts to communicate with a given audience, a task-based assessment
emphasizes the rhetor’s awareness of the subsequent action(s) that he or
she attempts to bring about or otherwise influence through the suasive act.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Conclusions  •  189

Such a model is aligned with the goals of activity theory (AT) and its
computational structure as well. In activity theory, a set of subjects and
their object emerge through the course of undertaking and accomplish-
ing (or at least attempting to accomplish) a particular activity. AT has pri-
marily been applied to human-computer interaction, but its fundamen-
tal principles could just as easily be applied to the rhetorical practices of
software code development as well as of its use. Christiansen (1996) has
argued that

activity [is] the term for the process through which a person creates
meaning in her practice, a process we can neither see or fully recall but
a process that is ongoing as a part of the participation in a community
of practice. Activity is a process that we can approach by unfolding the
task as stated within the community of practice and the objectified mo-
tive of the activity[.] (177)

While the focus in Christiansen’s assessment is clearly on process, it is a
process meant to accomplish a given set of tasks, each of which in turn
has a rhetorical goal and a computationally informed structure that has
led to the expression of the overall activity. AT offers a framework in which
to explore the rhetorical ecologies and genres of particular development
practices, helping scholars and developers alike to understand how all
components of an activity contribute to its undertaking and achievement.

In addition, emphasizing tasks as a fundamental component of rhe-
torical invention allows for the assessment of the procedural logic that
supports a particular attempt at meaning making. How might an audience
respond to, or build upon, a given argument? What sorts of affordances or
constraints has the rhetor incorporated into his or her communication so
as to influence any potential responses? In answering these questions, as-
sessors need to understand the algorithmic operations used by the rhetor
to maneuver from inventive potential to realized result. Without such an
evaluation—if the “computation” of the rhetorical situation is ignored—
then we lose the opportunity to explore the possibilities that alterations
in the rhetorical algorithm’s expression might have produced: how dif-
ferent variables (e.g., audience, purpose, modes of communication, tone
of message, etc.) would influence the outcome, how certain conditions
(e.g., how skeptical an audience initially is of the rhetor’s position) might
modify the restrictions upon specific appeals being made, and so on. A
rhetorical code studies demands not just looking at computer code as text

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

190  •  rhetorical code studies

Revised Pages

but also evaluating how rhetorical communication of any type employs
computational procedure in order to succeed.

A Future for Rhetorical Code Studies

This project has attended to the need for critics of rhetoric, software, and
code to engage and understand the rhetorical qualities of, and means of
construction for, meaningful communication through software code lan-
guages. Beyond arguing for code as a form of rhetorical activity through
extensive discussion of general strategies and specific examples in the
case of the Mozilla Firefox browser, I have offered in this chapter several
suggestions as to how interested critics might move forward with the as-
sessment of code through various relevant theoretical frameworks. While
these suggestions help us take a step forward toward a fuller rhetorical
code studies, they do not exhaust the possibilities for scholarly inquiry
into the development practices and processes that serve as the foundation
for digitally mediated action across populations.

In conjunction with the methods of assessment described above, we
can ask significant questions about the intended, and perceived, efforts at
suasion described in and through code. For example, how might we begin
applying rhetorical principles to existing software programs and practices
so that we might better understand the complex computational-rhetorical
processes in which we regularly engage? Such an undertaking involves
not simply identifying particular operations, methods, or function struc-
tures as possessing specific rhetorical qualities but also recognizing the
interplay between lines of code, social interactions between developers
(if there are multiple developers involved), bureaucratic procedures influ-
encing particular developers’ contributions to a project, and the software-
facilitating development activities, to say nothing of the situations sur-
rounding and informing the use of that program once it is released to
public audiences.

For scholars whose research interests focus on the various ways in
which discourse, interaction, culture, and digital technologies all overlap
and influence each other, rhetorical code studies can provide a foundation
upon which to build a more critically and technically oriented approach to
the study of these convergent forces. While it may not be necessary for all
scholars of rhetoric or software to consider the role of the other field as
part of their work, rhetorical code studies offers a means by which both
parties can extend their investigations in dimensions that would other-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Conclusions  •  191

wise remain black-boxed, unexplored, and otherwise unacknowledged: in
other words, a continuation of scholarly traditions that have left us unpre-
pared and unable to address the significant impact of code on the digital
programs and systems we use, for rhetorical purposes, every day.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

193

Bibliography

Abbate, J. 2012. Recoding Gender: Women’s Changing Participation in Computing. Cam-
bridge, MA: MIT Press.

Abdullah, R., et al. 2009. “The Challenges of Open Source Software Development
with Collaborative Environment.” 2009 International Conference on Computer Technol-
ogy and Development. Vol. 2. Kotakinabalu, Malaysia. 251–55. Retrieved from
https://dx.doi.org/10.1109/ICCTD.2009.161

Apache Software Foundation. 2012. “How the ASF Works.” The Apache Software Founda-
tion. Retrieved from https://www.apache.org/foundation/how-it-works.html

Applen, J. D. 2001. “Technical Communication, Knowledge Management, and XML.”
Technical Communication 49 (3): 301–13.

Arns, I. 2005. “Code as Performative Speech Act.” #Artnodes. Retrieved from http://
www.uoc.edu/artnodes/espai/eng/art/arns0505.pdf

Ballentine, B. 2009. “In Defense of Obfuscation: Questioning Open Source and a New
Perspective on Teaching Digital Literacy in the Writing Classroom.” In Composition
& Copyright: Perspectives on Teaching, Text-Making, and Fair Use, edited by S. West-
brook, 68–89. Albany: SUNY Press.

Banks, A. 2006. Race, Rhetoric, and Technology: Searching for Higher Ground. Mahwah, NJ:
Lawrence Erlbaum Press.

Barnett, F., Z. Blas, M. Cardenas, J. Gaboury, J. M. Johnson, and M. Rhee. 2016.
“QueerOS: A User’s Manual.” In Debates in the Digital Humanities, edited by M. K.
Gold and L. F. Klein. Retrieved from http://dhdebates.gc.cuny.edu/debates/text/56

Bazerman, C. 1994. “Systems of Genres and the Enactment of Social Intentions.” In
Genre and the New Rhetoric, edited by A. Freadman and P. Medway, 79–101. London:
Taylor & Francis.

Beck, E. 2016. “A Theory of Persuasive Computer Algorithms for Rhetorical
 Code Studies.” enculturation 23. Retrieved from http://enculturation.
net/a-theory-of-persuasive-computer-algorithms

Bellinger, M. 2016. “The Rhetoric of Error in Digital Media.” Computational Culture 5.
Retrieved from http://computationalculture.net/the-rhetoric-of-error-
in-digital-media-2/

Bénabou, M. 2007. “Rule and Constraint.” In Oulipo: A Primer of Potential Literature,
edited by W. Motte, 40–47. Champaign, IL: Dalkey Archive Press.

Benson, T. W. 1996. “Rhetoric, Civility, and Community: Political Debate on Com-
puter Bulletin Boards.” Communication Quarterly 44 (3): 359–78.

Berge, C. 2007. “For a Potential Analysis of Combinatory Literature.” In Oulipo: A
Primer of Potential Literature,edited by W. Motte, 115–25. Champaign, IL: Dalkey
Archive Press.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

194  •  Bibliography

Berlinski, D. 2000. The Advent of the Algorithm: The 300-Year Journey from an Idea to the
Computer. San Diego: Harcourt.

Berry, D. 2011. “Iteracy: Reading, Writing and Running Code.” Stunlaw: A Critical
Review of Politics, Arts, and Technology. Retrieved from http://stunlaw.blogspot.
com/2011/09/iteracy-reading-writing-and-running.html

Birkbak, A., and H. B. Carlsen. 2016. “The World of EdgeRank: Rhetorical Justifica-
tions of Facebook’s News Feed Algorithm.” Computational Culture 5. Retrieved from
http://computationalculture.net/the-world-of-edgerank-rhetorical-justifications-
of-facebooks-news-feed-algorithm/

Bitzer, L. F. 1959. “Aristotle’s Enthymeme Revisited.” Quarterly Journal of Speech 45 (4):
399–408.

Bitzer, L. F. 1968. “The Rhetorical Situation.” Philosophy and Rhetoric 1 (1): 1–14.
Black, M. L. 2015. “A Textual History of Mozilla: Using Topic Modeling to Trace Socio-

cultural Influences on Software Development.” Digital Humanities Quarterly 9 (3).
Retrieved from http://digitalhumanities.org/dhq/vol/9/3/000224/000224.html

Black, P. E. 2007. “Algorithm.” In Dictionary of Algorithms and Data Structures, edited by
P. E. Black. Retrieved from http://xlinux.nist.gov/dads//HTML/algorithm.html

Bogost, I. 2007. Persuasive Games: The Expressive Power of Videogames. Cambridge, MA:
MIT Press.

Bogost, I. 2008. “Platform Studies.” SoftWhere 2008. Retrieved from http://emerge.
softwarestudies.com/files/05_Ian_Bogost.mov

Bogost, I. and N. Montfort. 2009. “Platform Studies: Frequently Questioned
Answers.” Proceedings of the Digital Arts and Culture Conference. Retrieved from
http://escholarship.org/uc/item/01r0k9br

Bossert, T. P. 2017. “It’s Official: North Korea Is Behind WannaCry.”
Wall Street Journal. Retrieved from https://www.wsj.com/articles/
its-official-north-korea-is-behind-wannacry-1513642537

Bowker, G. 2008. “Software Values.” SoftWhere 2008 Software Studies Workshop. Re-
trieved from http://workshop.softwarestudies.com

Brassard, G., and P. Bratley. 1996. Fundamentals of Algorithmics. Englewood Cliffs, NJ:
Prentice-Hall.

Brock, K. 2014. “Enthymeme as Rhetorical Algorithm.” Present Tense: A Journal of Rheto-
ric in Society 4 (1). Retrieved from http://www.presenttensejournal.org/volume-4/
enthymeme-as-rhetorical-algorithm/

Brock, K. 2016. “The ‘FizzBuzz’ Programming Test: A Case-Based Exploration of Rhe-
torical Style in Code.” Computational Culture: A Journal of Software Studies 5. Retrieved
from http://computationalculture.net/article/the-fizzbuzz-programming-test-a-
case-based-exploration-of-rhetorical-style-in-code

Brock, K., and A. R. Mehlenbacher. 2017. “Rhetorical Genres in Code.” Journal of Tech-
nical Writing and Communication. http://dx.doi.org/10.1177/0047281617726278

Brock, K., and D. Shepherd. 2016. “Understanding How Algorithms Work Persua-
sively through the Procedural Enthymeme.” Computers and Composition 42: 17–27.

Brooke, C. G. 2009. Lingua Fracta: Towards a Thetoric of New Media. Cresskill, NJ: Hamp-
ton Press.

Brown, J. J., Jr. 2015. Ethical Programs: Hospitality and the Rhetorics of Software. Ann Arbor:
University of Michigan Press.

Brown, J. J., Jr., and A. Vee. 2016. “Rhetoric Special Issue Editorial Introduc-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Bibliography  •  195

tion.” Computational Culture 5. Retrieved from http://computationalculture.net/
rhetoric-special-issue-editorial-introduction/

Burgess, H. 2010. “<?php>: ‘Invisible’ Code and the Mystique of Web Writing.” In
From a to <a>: Keywords of Markup, edited by B. Dilger & J. Rice, 167–85. Minneapo-
lis: University of Minnesota Press.

Burke, K. 1962. A Grammar of Motives. Berkeley: University of California Press.
Burke, K. 1969. A Rhetoric of Motives. Berkeley: University of California Press.
Burke, K. 1973. The Philosophy of Literary Form. Berkeley: University of California

Press.
Burleigh, N. 2015. “What Silicon Valley Thinks of Women.” Newsweek. Retrieved from

http://www.newsweek.com/2015/02/06/what-silicon-valley-thinks-women-302821.
html

Carnegie, T. A. M. 2009. “Interface as Exordium: The Rhetoric of Interactivity.” Com-
puters and Composition 26 (3): 164–73.

Carpenter, R. 2009. “Boundary Negotiations: Electronic Environments as Interface.”
Computers and Composition 26 (3): 138–48.

Carroll, L. 1973. Symbolic Logic. Edited by W. W. Bartley. New York: Clarkson N. Potter.
Cassidy, S. 2014. “Diagnosis of the OpenSSL Heartbleed Bug.” Sean Cassidy. Re-

trieved from https://www.seancassidy.me/diagnosis-of-the-openssl-heartbleed-
bug.html

Castiglione, B. 1988. The Book of the Courtier. Translated by George Bull. New York:
Penguin.

Cayley, J. 2002. “Code Is Not the Text (Unless It Is the Text).” Electronic Book Review. Re-
trieved from http://www.electronicbookreview.com/thread/electropoetics/literal

Ceccarelli, L. 2001. Shaping Science with Rhetoric: The Cases of Dobzhansky, Schrödinger, and
Wilson. Chicago: University of Chicago Press.

Christiansen, E. 1996. “Tamed By a Rose: Computers as Tools in Human Activity.” In
Context and Consciousness: Activity Theory and Human-Computer Interaction, edited by B.
Nardi, 175–98. Cambridge, MA: MIT Press.

Christley, S., and G. Madey. 2007. “Analysis of Activity in the Open Source Software
Development Community.” Proceedings of the 40th Hawaii International Confer-
ence on System Sciences. Waikoloa, HI. Retrieved from https://dx.doi.org/10.1109/
HICSS.2007.74

Chun, W. H. K. 2011. Programmed Visions: Software and Memory. Cambridge, MA: MIT
Press.

Coleman, E. G. 2013. Coding Freedom: The Ethics and Aesthetics of Hacking. Princeton:
Princeton University Press.

Cooper, M. M. 1986. “The Ecology of Writing.” College English 48 (4): 364–75.
Cramer, F. 2005. Words Made Flesh: Code, Culture, Imagination. Rotterdam: Piet Zwart

Institute.
Crandall, J. 2008. “Unmanned Systems as Assemblages.” SoftWhere 2008 Software Stud-

ies Workshop. Retrieved from http://workshop.softwarestudies.com
Crowley, S., and D. Hawhee. 2009. Ancient Rhetorics for Contemporary Students. 4th ed.

New York: Pearson.
Crowston, K., et al. 2005. “A Structurational Perspective on Leadership in Free/Libre

Open Source Software Development Teams.” Proceedings of the 1st Conference on Open
Source Systems (OSS). Genoa, Italy. Retrieved from http://floss.syr.edu

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

196  •  Bibliography

Crowston, K., and J. Howison. 2005. “The Social Structure of Free and Open Source
Software Development.” First Monday 10: 1–27. Retrieved from http://floss.syr.edu

Crowston, K., and J. Howison. 2006. “Assessing the Health of Open Source Commu-
nities.” IEEE Computer 39: 113–15. Retrieved from http://floss.syr.edu

Cummings, R. E. 2006. “Coding with Power: Toward a Rhetoric of Computer Coding
and Composition.” Computers and Composition 23 (4): 430–43.

deasydoesit, et al. 2018. “Object Prototypes.” MDN Web Docs. Retrieved from https://
developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Object_prototypes

Debian. 2011. “Debian Project Leader.” Debian Developer’s Corner. Retrieved from http://
www.debian.org/devel/leader.en.html

Divine, D., T. Ferro, and M. Zachry. 2011. “Work Through the Web: A Typology of Web
2.0 Services.” In SIGDOC ’11: Proceedings of the 29th Annual ACM International Conference
on Design of Communication, edited by A. Protopsaltis et al., 121–28. New York: ACM
Digital Library.

dmose%netscape.com, and peterv. 2002. “Initial work (mostly by peterv) for a bayes-
ian spam filter. Not yet part of the build.” GitHub. Retrieved from https://github.
com/mozilla/ gecko-dev/blob/b7890a4bbb26100ef95f8872b10e18349d961400/
mailnews/extensions/bayesian-spam-filter/menuOverlay.js

Douglass, J. 2008. “#include Genre.” SoftWhere 2008 Software Studies Workshop. Re-
trieved from http://workshop.softwarestudies.com

Douglass, J. 2011. “Critical code studies conference—Week two discussion.” Electronic
Book Review. Retrieved from http://www.electronicbookreview.com/thread/
firstperson/recoded

Dubinsky, J. M., ed. 2004. Teaching Technical Communication: Critical Issues for the Class-
room. Boston: Bedford/St. Martin’s Press.

Duckett, J. 2014. JavaScript and jQuery: Interactive Front-End Web Development. Indianapo-
lis: Wiley & Sons.

Dyehouse, J. 2007. “Knowledge Consolidation Analysis: Toward a Methodology for
Studying the Role of Argument in Technology Development.” Written Communica-
tion 24 (2): 111–39.

Edbauer, J. 2005. “Unframing Models of Public Distribution: From Rhetorical Situa-
tion to Rhetorical Ecologies.” Rhetoric Society Quarterly 35 (4): 5–24.

Edmonds, J. 2008. How to Think about Algorithms. Cambridge, UK: Cambridge Univer-
sity Press.

ehsan, et al. 2013. “Bug 829870—Only draw in the title bar of private windows which
are browser windows on Mac; r=gavin.” GitHub. Retrieved from https://github.
com/mozilla/gecko-dev/blob/88ce997385044499f1781dcf7b80a1a969e282d8/
browser/base/content/browser.js

Eyman, D. 2015. Digital Rhetoric: Theory, Method, Practice. Ann Arbor: University of
Michigan Press.

Fagerjord, A. 2003. “Rhetorical Convergence: Studying Web Media.” In Digital Media
Revisited, edited by G. Liestøl, A. Morrison, and T. Rasmussen, 293–325. Cam-
bridge, MA: MIT Press.

Fahnestock, J. 2011. Rhetorical Style: The Uses of Language in Persuasion. Oxford: Oxford
University Press.

Ford, P. 2005. “Processing Processing.” In The Best Software Writing I, edited by J. Spol-
sky, 79–94. Berkeley, CA: Apress.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Bibliography  •  197

Ford, P. 2015. “What Is Code?” Businessweek. Retrieved June 11, 2015, from http://www.
bloomberg.com/graphics/2015-paul-ford-what-is-code/

França, R., et al. 2012. “Implementing Routing Concerns.” GitHub. Retrieved from
https://github.com/rails/rails/commit/0dd24728a088fcb4ae616bb5d62734aca52
76b1b

Fuller, M. 2003. Behind the Blip: Essays on the Culture of Software. Brooklyn, NY:
Autonomedia.

Fuller, M., and S. Matos. 2011. “Feral Computing: From Ubiquitous
Calculation to Wild Interactions.” The Fibreculture Journal, 144–63.
Retrieved from http://nineteen.fibreculturejournal.org/fcj-135-
feral-computing-from-ubiquitous-calculation-to-wild-interactions/

Fuller, S. 1997. “‘Rhetoric of science’: Double the Trouble?” In Rhetorical Hermeneu-
tics: Invention and Interpretation in the Age of Science, edited by A. G. Gross and W. M.
Keith, 279–98. Albany: State University of New York Press.

Gallagher, J. R. 2017. “Writing for Algorithmic Audiences.” Computers and Composition
45: 25–35.

Gaonkar, D. P. 1997. “The Idea of Rhetoric in the Rhetoric of Science.” In Rhetorical
Hermeneutics: Invention and Interpretation in the Age of Science, edited by A. G. Gross
and W. M. Keith, 25–85. Albany: SUNY Press.

Gaonkar, D. P. 2004. “Introduction: Contingency and Probability.” In A Companion to
Rhetoric and Rhetorical Criticism, edited by W. Jost and W. Olmsted, 6–21. Oxford,
UK: Blackwell Publishing.

Garsten, B. 2006. Saving Persuasion: A Defense of Rhetoric and Judgment. Cambridge, MA:
Harvard University Press.

gbrownmozilla. 2011. “Bug 669549—Some DeviceManager ADB functions do not
work; r=jmaher a=test-only.” GitHub. Retrieved from https://github.com/mozilla/
gecko-dev/commit/6ccc1a61a0bd87fa5144aa427d697c1971b1cacd

Gerrard, L. 1995. “The Evolution of the Computers and Writing conference.” Comput-
ers and Composition 12 (3): 279–92.

Gillespie, T. 2014. “The Relevance of Algorithms.” In Media Technologies: Essays on Com-
munication, Materiality, and Society, edited by T. Gillespie, P. J. Boczkowski, and K.
A. Foot, 167–94. Cambridge, MA: MIT Press.

Gillespie, T. 2016. Algorithm. In Digital Keywords: A Vocabulary of Information Society &
Culture, edited by B. Peters, 18–30. Princeton: Princeton University Press.

GIMP. 2018. “Getting Involved.” Retrieved from http://www.gimp.org/develop
GitHub. 2012. “Press.” GitHub. Retrieved from https://github.com/about/press
GitHub. 2017. Open Source Survey. Retrieved from http://opensourcesurvey.org/2017/
Goodling, L. 2015. “MOAR Digital Activism, Please.” Kairos: A Journal of Rhetoric, Tech-

nology, and Pedagogy 19 (3). Retrieved from http://kairos.technorhetoric.net/19.3/
topoi/goodling/index.html

Gozala et al. 2012. “Bug 7098984—promoting SDK promise library for toolkit.”
GitHub. Retrieved from https://github.com/mozilla/mozilla-central/pull/4

Grabill, J. 2003. “On Divides and Interfaces: Access, Class, and Computers.” Computers
and Composition 20 (4): 455–72.

Gurak, L. 1997. Persuasion and Privacy in Cyberspace. New Haven: Yale University Press.
Haefner, J. 1999. “The Politics of the Code.” Computers and Composition 16 (3): 325–39.
Hairston, M. C. 1986. “Bringing Aristotle’s Enthymeme into the Composition Class-

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

198  •  Bibliography

room.” In Rhetoric and Praxis: The Contribution of Classical Rhetoric to Practical Reason-
ing, edited by J. D. Moss, 59–77. Washington, DC: Catholic University of America
Press.

Hamerly, J., T. Paquin, and S. Walton. 1999. “Freeing the Source: The Story of
Mozilla.” In Open Sources: Voices from the Revolution, edited by C. DiBona and S. Ock-
man. Retrieved April 17, 2012, from http://oreilly.com/openbook/opensources/
book/netrev.html

Hart-Davidson, W., et al. 2008. “Coming to Content Management: Inventing Infra-
structure for Organizational Knowledge Work.” Technical Communication Quarterly
17 (1): 10–34.

Haverbeke, M. 2015. Eloquent JavaScript: A Modern Introduction to Programming. 2nd ed.
San Francisco: No Starch Press.

Hayles, N. K. 2004. “Print Is Flat, Code Is Deep: The Importance of a Media-Specific
Analysis.” Poetics Today 25 (1): 67–90.

Hayles, N. K. 2005. My Mother Was a Computer: Digital Subjects and Literary Texts. Chicago:
University of Chicago Press.

Hayles, N. K. 2012. How We Think: Digital Media and Contemporary Technogenesis. Chicago:
University of Chicago Press.

headius, et al. 2012. “Incorporate OpenSSL tests from JRuby.” GitHub. Retrieved from
https://github.com/ruby/ruby/pull/206

Helmond, A. 2013. “The Algorithmization of Hyperlinks.” Computa-
tional Culture 3. Retrieved from http://computationalculture.net/
the-algorithmization-of-the-hyperlink/

Herrick, J. A. 2016. History and Theory of Rhetoric: An Introduction. 5th ed. New York:
Routledge.

Hicks, M. 2017. Programmed Inequality: How Britain Discarded Women Technologists and Lost
its Edge in Computing. Cambridge, MA: MIT Press.

Hillis, W. D. 1998. The Pattern on the Stone: The Simple Ideas That Make Computers Work.
New York: Basic.

Hocks, M. E. 2003. “Understanding Visual Rhetoric in Digital Writing Environ-
ments.” College Composition and Communication 54 (4): 629–56.

Hodgson, J. and Barnett, S. 2016. “Introduction: What Is Rhetorical about Digital
Rhetoric? Perspectives and Definitions of Digital Rhetoric.” enculturation 23.
Retrieved from http://enculturation.net/what-is-rhetorical-about-digital-
rhetoric

Holmes, S. 2016. “Ethos, Hexis, and the Case for Persuasive Technol-
ogy.” enculturation 23. Retrieved from http://enculturation.net/
ethos-hexis-and-the-case-for-persuasive-technologies

Holmes, S. 2017. The Rhetoric of Videogames as Embodied Practice: Procedural Habits. New
York: Routledge.

Howison, J. 2006. Coordinating and Motivating Open Source Contributors. Retrieved from
http://floss.syr.edu

Howison, J., K. Inoue, and K. Crowston. 2006. “Social Dynamics of Free and Open
Source Team Communications.” IFIP 2nd International Conference on Open
Source Software. Lake Como, Italy. Retrieved from http://floss.syr.edu

Ingo, H., trans. 2006. Open Life: The Philosophy of Open Source (With Reader Comments).
Translated by S. Torvalds. Retrieved from http://openlife.cc/onlinebook

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Bibliography  •  199

Ingraham, C. 2014. “Toward an Algorithmic Rhetoric.” In Digital Rhetoric and Global
Literacies, edited by G. Verhulsdonck and M. Limbu, 62–79. Hershey, PA: IGI
Global.

Jasinski, J. 2001. Sourcebook on Rhetoric: Key Concepts in Contemporary Rhetorical Studies.
Thousand Oaks, CA: Sage.

Jerz, D. 2007. “Somewhere Nearby Is Colossal Cave: Examining Will Crowther’s
Original ‘Adventure’ in Code and in Kentucky.” Digital Humanities Quarterly 1 (2).
Retrieved from http://www.digitalhumanities.org/dhq/vol/001/2/000009/000009.
html

jgraham, et al. 2011. “GIT_WORK_TREE=. fails to apply patch in install profile when
using–working-copy.” Drupal. Retrieved from http://drupal.org/node/1276872

Johnson, J. M., and M. A. Neal. 2017. “Introduction: Wild Seed in the Machine.” Black
Scholar: Journal of Black Studies and Research 47 (3). https://doi.org/10.1080/00064246
.2017.1329608

Johnson, N. R. 2014. “Protocological Rhetoric: Intervening in Institutions.” Journal of
Technical Writing and Communication 44 (4): 381–400.

Johnson, R. R. 1998. “Complicating Technology: Interdisciplinary Method, the Bur-
den of Comprehension, and the Ethical Space of the Technical Communicator.”
Technical Communication Quarterly 7 (1): 75–98.

Johnson, R. R. 1999. “Johnson Responds.” Technical Communication Quarterly 8 (2):
224–26.

Juszkiewicz, J., and J. Warfel. 2016. “The Rhetoric of Mathematical Pro-
gramming.” enculturation 23. Retrieved from http://enculturation.net/
the-rhetoric-of-mathematical-programming

Keith, W. M. 1997. “Engineering Rhetoric.” In Rhetorical Hermeneutics: Invention and
Interpretation in the Age of Science, edited by A. G. Gross and W. M. Keith, 225–46.
Albany: SUNY Press.

Kelty, C. M. 2008. Two Bits: The Cultural Significance of Free Software. Durham, NC: Duke
University Press.

Kerner, S. M. 2015. “Why All Linux (Security) Bugs Aren’t Shallow.” eSecurity Planet.
Retrieved from https://www.esecurityplanet.com/open-source-security/why-all-
linux-security-bugs-arent-shallow.html

Kernighan, B. W., and R. Pike. 1999. The Practice of Programming. Reading, MA:
Addison-Wesley.

Kernighan, B. W., and P. J. Plauger. 1978. The Elements of Programming Style. 2nd ed.
New York: McGraw-Hill.

Khomami, N., and O. Solon. 2017. “‘Accidental Hero’ Halts Ransom-
ware Attack and Warns: This Is Not Over.” The Guardian. Retrieved
from https://www.theguardian.com/technology/2017/may/13/
accidental-hero-finds-kill-switch-to-stop-spread-of-ransomware-cyber-attack

al-Khwarizmi, Abu Abdallah Mohammed ben Musa, trans. 1831. The Algebra of Moham-
med ben Musa. Translated by F. Rosen. London: J. L. Cox. Retrieved from http://
books.google.com/books?id=3bNDAAAAIAAJ

Kimme Hea, A. C. 2007. “Riding the Wave: Articulating a Critical Methodology for
Web Research Practices.” In Digital Writing Research: Technologies, Methodologies,
and Ethical Issues, edited by H. A. McKee and D. N. DeVoss, 269–86. Cresskill, NJ:
Hampton Press.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

200  •  Bibliography

Kitchin, R., and M. Dodge. 2011. Code/Space: Software and Everyday Life. Cambridge, MA:
MIT Press.

Kittler, F. 2008. “Code.” In Software Studies: A Lexicon, edited by M. Fuller. Translated by
T. Morrison and F. Cramer, 40–47. Cambridge, MA: MIT Press.

Knuth, D. 1992. Literate programming. Stanford, CA: Center for the Study of Language
and Information.

Lamouri, M., et al. 2010. “Bug 561636 (4/4)—When an invalid form is submitted, an
error messages should be displayed. r=dolske a2.0=blocking.” GitHub. Retrieved
from https://github.com/mozilla/gecko-dev/blob/5d30f398bd39d63e9938165f9de
f84e2218c8589/browser/base/content/browser.js

Lanham, R. A. 1993. The Electronic Word: Democracy, Technology, and the Arts. Chicago:
University of Chicago Press.

Lanham, R. A. 2003. Analyzing Prose. 2nd ed. New York: Continuum.
Le Lionnais, F. 2007. “Lipo: First Manifesto.” In Oulipo: A Primer of Potential Literature,

edited by W. Motte, 26–28. Champaign, IL: Dalkey Archive Press.
Lee, M., W. Mercer, P. Rascagneres, and C. Williams. 2017. “Player 3 has entered the

game: Say hello to ‘WannaCry.’” Talos. Retrieved from http://blog.talosintelli
gence.com/2017/05/wannacry.html

Leyden, J. 2014. “AVG on Heartbleed: It’s Dangerous to Go Alone, Take This (an AVG
Tool). The Register. Retrieved from https://www.theregister.co.uk/2014/05/20/
heartbleed_still_prevalent/

Leyden, J. 2017. “WannaCry Ransomware Note Likely Written by Google Translate
– Using Chinese Speakers.” The Register. Retrieved from https://www.theregister.
co.uk/2017/05/26/wannacrypt_ransom_note_linguistics/

Lopes, C. V. 2014. Exercises in Programming Style. Boca Raton, FL: CRC Press.
Lopez, G. 2017. “Diversity Problems in the Tech Industry Go Far Beyond Google.”

Vox. Retrieved from https://www.vox.com/identities/2017/8/8/16113070/
google-memo-diversity-tech

Losh, E. 2009. Virtualpolitik: An Electronic History of Government Media-Making in a Time of
War, Scandal, Disaster, Miscommunication, and Mistakes. Cambridge, MA: MIT Press.

Losh, E. 2016. “Sensing Exigence: A Rhetoric for Smart Objects.” Com-
putational Culture 5. Retrieved from http://computationalculture.net/
sensing-exigence-a-rhetoric-for-smart-objects/

Lovelace, A. 2002. “Sketch of the Analytical Engine.” In Literature and Science in the
Nineteenth Century: An Anthology, edited by L. Otis, 15–19. Oxford: Oxford University
Press.

Lunenfeld, P. 2008. “Counterprogramming.” SoftWhere 2008 Software Studies Workshop.
Retrieved from http://workshop.softwarestudies.com

MacCormick, J. 2011. Nine Algorithms That Changed the Future: The Ingenious Ideas That
Drive Today’s Computers. Princeton: Princeton University Press.

Maher, J. 2011. “The Technical Communicator as Evangelist: Toward Critical and
Rhetorical Literacies of Software Documentation.” Journal of Technical Writing and
Communication 41 (4): 367–401.

Maher, J. 2016. “Artificial Rhetorical Agents and the Computing of Phronesis.”
Computational Culture 5. Retrieved from http://computationalculture.net/
artificial-rhetorical-agents-and-the-computing-of-phronesis/

Manovich, L. 2001. The Language of New Media. Cambridge, MA: MIT Press.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Bibliography  •  201

Manovich, L. 2008. Software Takes Command. Retrieved from http://www.softwar
estudies.com/softbook/manovich_softbook_11_20_2008.pdf

Marino, M. 2006. “Critical Code Studies.” Electronic Book Review. Retrieved from http://
www.electronicbookreview.com/thread/electropoetics/codology

Mason, P. 2016. “The Racist Hijacking of Microsoft’s Chatbot Shows How the Internet
Teems with Hate.” The Guardian. Retrieved from https://www.theguardian.com/
world/2016/mar/29/microsoft-tay-tweets-antisemitic-racism

Mateas, M. 2005. “Procedural Literacy: Educating the New Media Practitioner.” On the
Horizon 13 (2): 101–11.

Matsumoto, Y. 2007. “Treating Code As an Essay.” In Beautiful Code: Leading Program-
mers Explain How They Think, edited by A. Oram and G. Wilson, 477–81. Sebasto-
pol, CA: O’Reilly.

McCorkle, B. 2012. Rhetorical Delivery as Technological Discourse. Carbondale: Southern
Illinois University Press.

McNenny, G., and D. Roen. 1992. “The Case for Collaborative Scholarship in Rhetoric
and Composition.” Rhetoric Review 10 (2): 291–310.

McPherson, T. 2012. “Why Are the Digital Humanities So White? Or Thinking the His-
tories of Race and Computation.” In Debates in the Digital Humanities, edited by M.
K. Gold, 139–60. Minneapolis: University of Minnesota Press.

Miller, C. R. 1979. “A Humanistic Rationale for Technical Writing.” College English 40
(6): 610–17.

Miller, C. R. 1984. “Genre as Social Action.” Quarterly Journal of Speech 70 (2): 151–67.
Miller, C. R. 2000. “The Aristotelian Topos: Hunting for Novelty.” In Rereading Aristotle’s

Rhetoric, edited by A. Gross and A. Walzer. Carbondale: Southern Illinois Univer-
sity Press.

Miller, C. R. 2001. “Writing in a Culture of Simulation: Ethos Online.” In The Semiotics
of Writing: Transdisciplinary Perspectives on the Technology of Writing, edited by P. Cop-
pock, 253–79. Turnhout, Belgium: Brepols Publishers.

Miller, C. R. 2007. “What Can Automation Tell Us about Agency?” Rhetoric Society
Quarterly 37 (2): 137–57.

Miller, C. R. 2010a. “Foreword: Rhetoric, Technology, and the Pushmi-Pullyu.” In
Rhetorics and Technologies: New Directions in Writing and Communication, edited by S. A.
Selber, ix–xii. Columbia: University of South Carolina Press.

Miller, C. R. 2010b. “Should We Name the Tools? Concealing and Revealing the Art
of Rhetoric.” In The Public Work of Rhetoric: Citizen-Scholars and Civic Engagement,
edited by J. M. Ackerman and D. J. Coogan, 19–38. Columbia: University of South
Carolina Press.

Miller, C. R., and D. Shepherd. 2004. “Blogging as Social Action: A Genre Analysis
of the Weblog.” In Into the Blogosphere: Rhetoric, Community, and Culture of Weblogs,
edited by L. Gurak and S. Antonijevic. University of Minnesota. Retrieved from
https://conservancy.umn.edu/handle/11299/172818

Miller, C. R., and D. Shepherd. 2009. “Questions for Genre Theory from the Blogo-
sphere.” In Genres in the Internet: Issues in the Theory of Genre, edited by J. Giltrow and
D. Stein, 263–90. Amsterdam: John Benjamins.

Montfort, N., and I. Bogost. 2009. Racing the Beam: The Atari Video Computer System.
Cambridge, MA: MIT Press.

Moody, G. 2012. “Interview: Linus Torvalds—I don’t read code any more.” The H Open.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

202  •  Bibliography

Retrieved from http://www.h-online.com/open/features/Interview-Linus-Torvalds-
I-don-t-read-code-any-more-1748462.html

Moore, P. 1999. “Myths about Instrumental Discourse: A Response to Robert R. John-
son.” Technical Communication Quarterly 8 (2): 210–23.

Moxley, J. 2008. “Datagogies, Writing Spaces, and the Age of Peer Production.” Com-
puters and Composition 25 (2): 182–202.

Mozilla. n.d.a. “Governance.” Mozilla. Retrieved from http://www.mozilla.org/about/
governance.html

Mozilla. n.d.b. “Mozilla at a Glance.” Mozilla. Retrieved from http://www.mozilla.org/
en-US/press/ataglance

Mozilla. 2012a. “Creating Mercurial User Repositories.” Mozilla Developer
Network. Retrieved from https://developer.mozilla.org/en-US/docs/
Creating_Mercurial_User_Repositories

Mozilla. 2012b. “Mozilla.” GitHub. Retrieved April 17, 2012, from https://github.com/
mozilla

Mozilla. 2016. “EngineeringProductivity/Projects/Treeherder.” Mozilla Wiki. Retrieved
from https://wiki.mozilla.org/EngineeringProductivity/Projects/Treeherder

Muckelbauer, J. 2008. The Future of Invention: Rhetoric, Postmodernism, and the Problem of
Change. Albany: SUNY Press.

Murray, J. 2009. Non-Discursive Rhetoric: Image and Affect in Multimodal Composition.
Albany: SUNY Press.

Nakakoji, K., K. Yamada, and E. Giaccardi. 2005. “Understanding the Nature of Col-
laboration in Open-Source Software Development.” Proceedings of the 12th Asia-
Pacific software engineering conference. Taipei, Taiwan. Retrieved from https://
doi.org/10.1109/APSEC.2005.108

Nakamura, L. 2007. Digitizing Race: Visual Cultures of the Internet. Minneapolis: University
of Minnesota Press.

Nardi, B. A. 1995. A Small Matter of Programming: Perspectives on End User Computing.
Cambridge, MA: MIT Press.

Nicotra, J. 2016. “Assemblage Rhetorics: Creating New Frameworks for Rhetorical
Action.” In Rhetoric, through Everyday Things, edited by S. Barnett and C. Boyle, 185–
96. Tuscaloosa: University of Alabama Press.

Noble, S. U. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. New
York: New York University Press.

Nowviskie, B. 2014. “Ludic algorithms.” In Pastplay: Teaching and Learning History with
Technology, edited by K. Kee, 139–71. Ann Arbor: University of Michigan Press.

Ong, W. J. 2002. Orality and Literacy. New York: Routledge.
O’Reilly, T. 2005. “The Open Source Paradigm Shift.” In Open Sources 2.0: The Continu-

ing Evolution, edited by C. DiBona, D. Cooper, and M. Stone, 253–72. Sebastopol,
CA: O’Reilly Media.

Parikka, J. 2008. “Copy.” In Software Studies \ A Lexicon, edited by M. Fuller. Cambridge,
MA: MIT Press.

Platt, D. S. 2007. Why Software Sucks . . . and What You Can Do about It. Upper Saddle
River, NJ: Addison-Wesley.

Porter, J. 2009. “Recovering Delivery for Digital Rhetoric.” Computers and Composition
26 (4): 207–24.

Prelli, L. J. 1989. “The Rhetorical Construction of Scientific Ethos.” In Rhetoric in the

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Bibliography  •  203

Human Sciences: Inquiries in Social Construction, edited by H. W. Simmons, 48–68.
London: Sage.

Queneau, R. 2007. “Potential Literature.” In Oulipo: A Primer of Potential Literature,
edited by W. Motte, 51–64. Champaign, IL: Dalkey Archive Press.

Queneau, R. 2009. Exercises in Style. Translated by B. Wright. New York: New
Directions.

“Quine.” n.d. In Rosetta Code. Retrieved from http://rosettacode.org/wiki/Quine
Quine, W. V. 1976. “The Ways of Paradox.” In The Ways of Paradox and Other Essays, W.

V. Quine. Cambridge, MA: Harvard University Press. Retrieved from http://www.
math.dartmouth.edu/~matc/Readers/HowManyAngels/Paradox.html

Rahm, E., et al. 2016. “Bug 1286041—1,700 instances of ‘data callback fires before
cubeb_stream_start() is called’ emitted from dom/media/AudioStream.cpp during
linux64 debug testing.” Bugzilla@Mozilla. Retrieved from https://bugzilla.mozilla.
org/show_bug.cgi?id=1286041

Ramsay, S. 2011. Reading Machines: Toward an Algorithmic Criticism. Urbana: University of
Illinois Press.

Raymond, E. S. 2000. The Cathedral and the Bazaar. Retrieved from http://www.catb.
org/~esr/writings/homestead-ing/cathedral-bazaar/index.html

Reagle, J. 2013. “‘Free as in sexist?’: Free Culture and the Gender Gap.” First Mon-
day 18 (1). Retrieved from http://journals.uic.edu/ojs/index.php/fm/article/
view/4291/3381

Red Hat. 2017. “Fedora’s Mission and Foundations.” Fedora. Retrieved from https://
docs.fedoraproject.org/fedora-project/project/fedora-overview.html

Reif, A. 2013. “Feminism and Biases.” HASTAC. Retrieved from https://www.hastac.
org/comment/8399#comment-8399

Rieder, D. 2010. “Snowballs and Other Numerate Acts of Textuality: Exploring the ‘Alpha-
numeric’ Dimensions of (Visual) Rhetoric and Writing with ActionScript 3.” Computers
and Composition Online. Retrieved from http://www.bgsu.edu/cconline/rieder/

Rieder, D. 2016. “Making wayves.” enculturation 23. Retrieved from http://encultura
tion.net/making-wayves

Risam, R. 2015. “Beyond the Margins: Intersectionality and the Digital Humanities.”
Digital Humanities Quarterly 9 (2). Retrieved from http://www.digitalhumanities.
org/dhq/vol/9/2/000208/000208.html

Ritzer, G., and N. Jurgenson. 2010. “Production, Consumption, Prosumption: The
Nature of Capitalism in the Age of the Digital ‘Prosumer.’” Journal of Consumer
Culture 10 (1): 13–36. https://doi.org/10.1177/1469540509354673

Rose, A. 2010. Are Face-Detection Cameras Racist? Time. Retrieved from http://con
tent.time.com/time/business/article/0,8599,1954643,00.html

Rushkoff, D. 2011. Program or Be Programmed: Ten Commands for a Digital Age. Berkeley,
CA: Soft Skull Press.

Sack, W. 2008. “From Software Studies to Software Design.” SoftWhere 2008 Software
Studies Workshop. Retrieved from http://workshop.softwarestudies.com

Salter, A., and J. Murray. 2014. Flash: Building the Interactive Web. Cambridge, MA: MIT
Press.

Sample, M. 2013. “Criminal Code: Procedural Logic and Rhetorical Excess in Video-
games.” Digital Humanities Quarterly 7 (1). Retrieved from http://digitalhumanities.
org/dhq/vol/7/1/000153/000153.html

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

204  •  Bibliography

saskatchewancatch, et al. 2016. “Introduction to Object-Oriented JavaScript.” Mozilla
Developer Network. Retrieved from https://developer.mozilla.org/en-US/docs/
JavaScript/Introduction_to_Object-Oriented_JavaScript

Schlesinger, A. 2013. “Feminism and Programming Languages.” HASTAC. Re-
trieved from https://www.hastac.org/blogs/ari-schlesinger/2013/11/26/
feminism-and-programming-languages

Schmidt, B. M. 2016. “Do Digital Humanists Need to Understand Algorithms?” In De-
bates in the Digital Humanities, edited by M. K. Gold and L. F. Klein. Retrieved from
http://dhdebates.gc.cuny.edu/debates/text/99

Scott, Z., et al. 2012. “Feature #7400: Incorporate OpenSSL Tests from JRuby.” Ruby
Issue Tracking System. Retrieved from http://bugs.ruby-lang.org/issues/7400

Selber, S. A. 2004. Multiliteracies for a Digital Age. Carbondale: Southern Illinois Univer-
sity Press.

Selfe, C. L., and R. J. Selfe Jr. 1994. “The Politics of the Interface: Power and its Ex-
ercise in Electronic Contact Zones.” College Composition and Communication 45 (4):
480–504.

Shannon, C. E. 1937. “A Symbolic Analysis of Relay and Switching Circuits.” Unpub-
lished master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.

Sharp, G., et al. 2010. “Bug 595356: pref dialog should show default home page as
‘Firefox start’ .r=mak a=blocking.” GitHub. Retrieved from https://github.com/
mozilla/gecko-dev/blob/443b32151a08f0ad62d39291b4ad5e7d5b65521e/browser/
components/preferences/main.js

Shepherd, D. 2016. Building Relationships: Online Dating and the New Logics of Internet
Culture. London: Lexington Books.

Sherov, M., et al. 2012. “Fixes #12587, ‘hidden’ selector doesn’t work for SVG images
in Firefox.” GitHub. Retrieved from https://github.com/jquery/jquery/pull/939

Shiffman, D. 2014. “HashMapClass.” Processing. Retrieved from https://github.com/
processing/processing-docs/tree/master/content/examples/Topics/Advanced%20
Data/HashMapClass

Shipka, J. 2011. Toward a Composition Made Whole. Pittsburgh: University of Pittsburgh
Press.

Shirky, C. 2009. Here Comes Everybody: The Power of Organizing without Organizations. New
York: Penguin.

Silver, D. 2005. “Selling Cyberspace: Constructing and Deconstructing the Rhetoric of
Community.” Southern Communication Journal 70 (3): 187–99.

Smith, V. J. 2007. “Aristotle’s Classical Enthymeme and the Visual Argumentation of
the Twenty-First Century.” Argumentation and Advocacy 43 (3–4): 114–23. https://
doi.org/10.1080/00028533.2007.11821667

snhenson, et al. 2015. “Add heartbeat extension bounds check.” GitHub. Retrieved
from https://github.com/openssl/openssl/commit/731f431497f463f3a2a97236fe0
187b11c44aead

Spinuzzi, C. 2002a. “Software Development as Mediated Activity: Applying Three
Analytical Frameworks for Studying Compound Mediation.” In SIGDOC ’01: Proceed-
ings of the 19th Annual International Conference on Computer Documentation, edited by
M. J. Northrop and S. Tilley, 58–67. New York: ACM Digital Library.

Spinuzzi, C. 2002b. “Towards a Hermeneutic Understanding of Programming Lan-
guages.” Currents in Electronic Literacy 6. Retrieved from http://currents.dwrl.utexas.
edu/spring02/spinuzzi.html

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

Bibliography  •  205

Spinuzzi, C. 2003. “Compound Mediation in Software Development.” In Writing Selves/
Writing Societies: Research from Activity Perspectives, edited by C. Bazerman and D. R.
Russell. Fort Collins, CO: The WAC Clearinghouse.

Steinberg, J. 2014. “Sexism in Startups: The Frank Conversation We Need
to Be Having.” Forbes. Retrieved from https://www.forbes.com/sites/
josephsteinberg/2014/09/18/heres-the-conversation-men-need-to-
have-about-sexism-as-told-by-a-man/

Steiner, C. 2012. Automate This: How Algorithms Came to Rule Our World. New York:
Penguin.

Stewart, D. 2005. “Social Status in an Open-Source Community.” American Sociological
Review 70 (5): 823–42.

Stolley, K. 2014. “MVC, Materiality, and the Magus: The Rhetoric of Source-Level
Production.” In Rhetoric and the Digital Humanities, edited by J. Ridolfo and W. Hart-
Davidson, 264–76. Chicago: University of Chicago Press.

Streuver, N. S. 2009. Rhetoric, Modality, Modernity. Chicago: University of Chicago Press.
Sullivan, R. 2013. “The Liminal Textuality of Comments in Code.” Presented at the

Objects of Textual Scholarship, Society for Textual Scholarship (STS) Conference.
Chicago. Retrieved from http://rachaelsullivan.com/sts2013/index.html

Swarts, J. 2011. “Technological Literacy as Network Building.” Technical Communication
Quarterly 20 (3): 274–302.

Swarts, J. 2015. “Help Is in the Helping: An Evaluation of Help Documentation in a
Networked Age.” Technical Communication Quarterly 24 (2): 164–87.

Tarsa, R. 2015. “Upvoting the Exordium: Literacy Practices of the Digital Interface.”
College English 78 (1): 12–33.

Thomson, P. 2008. “Git vs. Mercurial: Please Relax.” Important Shock. Retrieved from
https://importantshock.wordpress.com/2008/08/07/git-vs-mercurial/

Thompson, K. 1984. “Reflections on Trusting Trust.” Communications of the ACM 27 (8):
761–63.

topwiz. 2013. “The Real World.” HASTAC. Retrieved from https://www.hastac.org/
comment/8380#comment-8380

troy%netscape.com. 1999. Work-in-progress for ‘min’ and ‘max’ properties.
GitHub. Retrieved from https://github.com/mozilla/gecko-dev/commit/
a6281248abc3cb214706f970205b63ae5c83c832

Truscello, M. 2005. “The Rhetorical Ecology of the Technical Effect.” Technical Com-
munication Quarterly 14 (3): 345–51.

Valarissa, et al. 2012. “Pull request #554: Fixed a small, but major, typo.” GitHub.
Retrieved from https://github.com/hotsh/rstat.us/pull/554

Vatz, R. E. 1968. “The Myth of the Rhetorical Situation.” Philosophy & Rhetoric 6 (3):
154–61.

Vee, A. 2017. Coding Literacy: How Computer Programming Is Changing Writing. Cambridge,
MA: MIT Press.

Walden, J., B. Goodger, and A. Romano. 2006a. “Add a few missed files . . . if I have
a clean tree and patch it with a patch that includes files, I shouldn’t have to cvs
add those files before I commit them—cvs sucks.” GitHub. Retrieved from https://
github.com/mozilla/gecko-dev/commit/d50971d58f8d4c521a490c1e18c3e4b2a4e
9ad07#diff-37f10ac89685d3613a8073b8f663becb

Walden, J., B. Goodger, and A. Romano. 2006b. “Bug 340677—update preference
panels (add anti-phishing, rationalize categories, simplify wording). We’re slowly

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Revised Pages

206  •  Bibliography

spiralling in on a final design . . . r=mconnor.” GitHub. Retrieved from https://
github.com/mozilla/gecko-dev/blob/aac4ed2044d52f80cf9e597f86f
7c37c747720c8/browser/components/preferences/main.js

Walker, J. 1994. “The Body of Persuasion: A Theory of the Enthymeme.” College English
56 (1): 46–65.

Walton, D. 2001. “Enthymemes, Common Knowledge, and Plausible Inference.”
Philosophy and Rhetoric 34 (2): 93–112.

Wardrip-Fruin, N. 2009. Expressive Processing: Digital Fictions, Computer Games, and Soft-
ware Studies. Cambridge, MA: MIT Press.

Warnick, B. 2004. “Online Ethos: Source Credibility in an ‘Authorless’ Environment.”
American Behavioral Scientist 48 (2): 256–65.

Warnick, B. 2007. Rhetoric Online: Persuasion and Politics on the World Wide Web. New York:
Peter Lang.

Warnock, S., and M. Kahn. 2007. “Expressive/Exploratory Technical Writing (XTW)
in Engineering: Shifting the Technical Writing Curriculum.” Journal of Technical
Writing and Communication 37 (1): 37–57.

Wiggins, A., J. Howison, and K. Crowston. 2008. “Social Dynamics of FLOSS Team
Communication across Channels.” Proceedings of the IFIP 2.13 Working Confer-
ence on Open Source Software (OSS). Milan, Italy. 131–42. Retrieved from http://
floss.syr.edu

WNeZRoS, et al. 2012. “Add support for AR5BBU22 [0489:e03c].” GitHub. Retrieved
from https://github.com/torvalds/linux/pull/17

W3Counter. 2017. “Browser & Platform Market Share: December 2017.” W3Counter.
Retrieved from http://www.w3counter.com/trends

Yancey, K. B. 2004. “Made Not Only in Words: Composition in a New Key.” College
Composition and Communication 56 (2): 297–328.

Zappen, J. 2005. “Digital Rhetoric: Toward an Integrated Theory.” Technical Communi-
cation Quarterly 14 (3): 319–25.

Zawinski, J. 2004. “Censorzilla.” JWZ.org. Retrieved from https://www.jwz.org/doc/
censorzilla.html

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

207

Master Pages

Index

action, 5, 6, 13–15, 18, 20, 27, 30, 33, 38–
39, 42–47, 52–56, 61, 63, 68, 85, 88,
97, 106, 108, 112–13, 115–20, 123,
126–27, 129–30, 141, 147, 149, 159,
166, 181–82, 186–88, 190

symbolic, 14, 68, 187–88
activity

algorithmic, 1, 4, 63, 116, 126, 132,
144, 147, 149

community, 73, 76, 81–82
composing (see: composition)
discursive (see: discourse)
human/humanistic, 47, 68, 71–73,

103, 149, 182, 187
programming (see: development)
rhetorical, 5, 10–12, 17, 26–28, 33, 39–

40, 43–45, 55, 61, 63, 77, 79, 97–98,
102, 105, 116, 118, 120, 126–28, 141,
146, 149–50, 170, 179, 184, 188–90

system, 28
theory, 28, 189

affordance, 20, 54, 81, 84, 112, 173, 189
agency, 15, 18, 85–86, 125, 185
agent, rhetorical, 30, 45, 52, 60, 63, 118,

152
technology as, 19–20, 75, 118, 126, 185

algebra, 34–35, 45. See also: mathematics
algorithm, 1, 5–6, 10–12, 15, 19–21,

23–28, 31–49, 51–60, 68, 71, 75, 88,
119, 129, 142–45, 158, 181–89. See
also: computation; criticism; logic;
procedure

definitions of, 12, 20, 25, 33–38,
49–52

Amazon, 2, 9, 86
anaphora, 54, 141, 145, 184
Apache web server, 78, 94–95
argument. See meaning making
arrangement, 46, 53, 67, 132, 140–45,

160, 162, 165, 170–74, 177–78,
184

array data type, 159–60, 163–64, 166,
171–72, 177

Assembly language, 12, 24
assessment, 6, 18, 186–90
audience(s), 2–6, 10–11, 13–15, 20, 22,

27–30, 38, 40–46, 48–55, 62–63,
68, 72, 75, 81, 84–86, 88–91, 95–
103, 106–8, 113, 116, 118–19, 127,
130, 140–41, 144–45, 150, 152–53,
156–59, 165, 170–75, 177–79,
182–90

nonhuman, 12, 24, 28, 47, 52, 59–60,
62, 68, 116, 119, 126, 171, 185–87

automation, 18, 25, 36, 109, 125–26, 172,
185

awareness, rhetorical, 3, 14, 17, 37, 54,
63, 86, 93, 95–96, 111, 145, 188

Boolean logic. See: logic, Boolean
Bubble Sort, 170–73
bug, 9–10, 72, 78, 93–94, 99, 108, 122,

126, 131, 167

C language, 12
C++ language, 92, 115–16, 144

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Master Pages

208  •  Index

calculation, 12, 35–37, 42, 59, 65, 71,
118, 141, 148–49, 154–57, 160, 163,
169, 171. See also: computation

canon(s) of rhetoric, 18, 38, 52, 56, 74,
170

chaining, 168–69, 172, 178
chiasmus, 54, 61, 97
class (programming), 65, 142, 144, 146–

47, 166–68
climax, 141, 143, 145, 150, 184
code. See: algorithm; development, soft-

ware; program, software
codework, 50
collaboration, 50, 54, 71–72, 75, 80–86,

90, 93, 99, 103, 106–8, 111–13, 117,
121–28, 144–45, 150, 179, 183–85

combination, 39–40, 60, 110–11, 121, 128,
140, 153–57, 160, 173

comments in code, 5–6, 12–13, 22, 69,
72, 89–92, 97, 101–3, 107, 112, 116,
119, 125, 128, 131–32, 135, 138–39,
144

communication, 2, 5–6, 9, 10–23, 27–30,
33, 38, 40, 43–44, 47, 50–53, 56–
57, 60–63, 68–77, 79, 81, 84–86, 93,
95–98, 107–8, 110, 112–22, 127–30,
132, 136, 144–45, 160–51, 171,
178–79, 181–84, 186–90. See also:
discourse; meaning making; techni-
cal communication

mode(s) of, 17–19, 68, 73, 77, 98, 102–
3, 115, 119, 127, 151, 179

community, 2, 10, 16, 37, 38, 51, 57, 72–
95, 97–108, 120–24, 126–28, 130,
136, 138–40, 149–50, 183–84,
189

development, 14, 28, 57, 68–69,
75–95, 97–108, 112, 116–17, 121–
24, 126–28 (see also: Open Source
Software)

individuals’ standing in, 79–84
leadership, 79–84, 95, 99, 100–102,

109, 123–24

makeup of, 75–85, 94–95, 117, 127,
139

values of, 4, 7, 21, 24–25, 39, 69, 72,
79–84, 87–88, 92–94, 98–99, 107,
123, 125–29, 138–39, 141–42, 167

complexity
of algorithms, 10, 37, 44–45, 52, 56,

144, 151–53, 155, 157, 167–69, 173,
178, 184, 190

of communication, 4, 75, 151
of relationships, 11–12, 16, 79–83
of rhetorical activity, 18, 27–28, 31, 36,

39–43, 47, 108, 120, 127, 168
composition, 2, 4, 6, 12–16, 20, 25, 27,

29, 33, 39, 45, 50–52, 55, 58–59,
62–63, 68, 71–73, 75, 81, 88, 95,
103, 111, 115–16, 129–29, 135–36,
142, 148, 150–54, 157, 164, 169–74,
177, 179, 181, 183–85, 188

computation, 4, 6, 18–20, 22–23, 25,
29–31, 35–37, 39, 41–46, 48, 50–52,
54–61, 63, 65–68, 71–72, 84, 88,
90, 104, 106–7, 112–13, 119, 127–29,
132, 140–41, 143–44, 147–48, 153–
57, 163, 166, 168, 171, 178, 181–90.
See also: algorithm

computer science, 33, 36–38, 50, 181–82
conditions, 34, 40–42, 51, 57–58, 66,

132, 138, 148, 153, 155–57, 159–64,
171, 177–78, 189

constraint, 20–24, 26, 31, 37, 42–47, 53,
65, 66, 72, 97, 112, 127, 129, 147,
152, 170, 175, 181, 184, 186, 189

context, 2, 4, 12–14, 16, 18, 20–21, 29–31,
38, 43, 50–55,, 65, 67, 74, 85, 110,
112, 120, 127, 139, 144, 151, 169–70,
173, 177–78, 185–87

convention, 16–17, 105, 122, 136, 139
credibility, 97–98. See also: ethos
critical code studies, 5, 10, 11, 21–22, 29–

31, 49, 182, 190
criticism, algorithmic, 21, 39, 47–49,

63, 187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Master Pages

Index  •  209

criticism, rhetorical, 31, 185, 187. See also:
rhetoric

data, 1–3, 9, 20, 24–25, 28, 31, 33, 36,
47, 47–48, 51–52, 56–61, 63–65,
74, 89, 97, 109, 118–19, 130–32, 141,
143, 146, 153–74, 178, 183–84

Debian Linux, 78, 83, 103
delivery, 18, 19, 29, 54–55, 96, 118, 141, 186
development, software, 3–7, 10–18, 23–

31, 36–37, 46, 49, 57, 63, 68–69,
71, 73–88, 90–108, 110–13, 116–17,
120–28, 130, 132, 135–36, 139–42.
See also: language, programming

communities (see: community)
philosophy of, 95, 104
practice(s) of, 13, 20, 26–31, 50, 52,

63, 87–89, 92, 95–112, 115–18, 120,
122, 125–28, 130, 132, 136, 139–41,
144–46, 149–52, 155–69, 181–90

discourse. See also: meta-discourse
about code, 6, 12–14, 68, 71–75, 86–

88, 108–10, 124,
academic, 18–19, 37, 104–5,
community (see: community)
conventional/traditional, 42, 51, 72–

74, 98, 102, 112–13, 115–16, 118–20,
123, 150, 170, 183–85, 190

digital forms of, 52, 74–75, 102, 113,
116, 123, 184–85, 190

Drupal, 110–12, 130
DRY philosophy, 142. See also: repetition

efficiency, 4, 35, 52, 84, 88, 90, 96–97,
104, 127, 132, 141, 146, 158, 163, 171,
179, 184

elegance, 4, 57, 95–96, 132, 142, 146,
157, 163

engineering, 4, 33, 35, 37, 50, 182
enthymeme, 39–43, 54, 63, 172–78, 182–

83, 188. See also: syllogism

epistrophe, 141, 143, 145, 150
ethics, 2, 7, 11, 20, 106, 185
ethos, 19, 83, 93, 97–100, 119, 183
exergasia, 141, 145–48
exigence, 2, 18, 39, 43, 44, 52, 108, 124,

127, 183
exordium, 18
exploit, 1, 9, 108, 129
expression, 4, 12, 14, 18, 20–21, 29–31,

33, 42–43, 46, 49–52, 54–57, 62–
67, 90–91, 105, 115, 129, 157, 169,
174–75, 186, 189

Facebook, 3, 20
Firefox. See: Mozilla Firefox
FizzBuzz test, 56–60, 135, 161–65, 183
fork, 84, 98, 103–8, 112, 125
function (programming), 52, 68, 109,

119, 130, 135, 138–48, 153–54, 162,
165, 167, 177, 190

function (purpose), 3, 6, 13, 19–22, 24,
29, 41–42, 46, 50–51, 53, 55, 58–59,
61–62, 71–73, 80–82, 86–91, 105,
109, 11, 115, 117–18, 125, 128, 140,
149–50, 151, 153–54, 160, 166–67,
177–79, 182–83, 187–88

functionality, 1, 24, 34, 55, 63, 80–82, 87,
90, 97, 108, 125, 130, 132, 135–36,
139, 144, 167, 169, 177

genre, 6, 11, 16, 20–21, 28–29, 51, 72,
74, 127–30, 139–40, 149, 161, 163,
179, 189

ecology, 28, 127–28
system, 127, 140

GIMP, 82
git, 100–101, 106, 111–12, 124–25
GitHub, 77, 100–102, 124–26

2017 survey, 77
Google, 24–26, 86, 135
Google Chrome, 103, 120

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Master Pages

210  •  Index

Hansson, David H., 89–90
HashMap, 56, 63–66, 144, 183
Heartbleed, 9–10, 13. See also: bug
heuristic, 29, 38, 178
human-computer interaction, 189
humanities, 5–6, 13, 16, 23, 26–27, 31,

33, 39–40, 45, 47, 49, 51, 62, 68, 71,
182, 186

digital, 13, 26

imitation, 104, 152
interface, 12, 17–18, 20, 24, 26–27, 96,

101, 111, 115, 119, 125, 134, 143,
182

invention, 5, 15, 19, 22, 27, 30, 38, 45–
47, 51, 54–55, 95, 105, 129, 150,
152, 163, 173–74, 178, 182, 186,
188–89

iteration, 1, 41, 54, 56, 58–59, 65, 73–74,
78, 110, 113, 116, 123, 128, 130, 133,
135–36, 139–43, 145–47, 157–64,
171–66, 172, 183. See also: loop

Java language, 12, 63, 98, 144
JavaScript language, 57–58, 92, 99, 115–

16, 136–38, 146–48, 151–52, 154–70,
172–78

JRuby, 98–99

kairos, 84–85, 87, 102, 104, 108, 124,
127, 149

al-Khwarizmi, Abu Abdulah Mohammed
ibn Musa, 34–35

language, natural, 3–4, 12–13, 18, 25–26,
31, 36, 44, 49–50, 53–55, 62, 100,
119, 123, 129, 149, 153–55, 163

profanity use, 90–92
language, programming, 4, 12, 21–22,

24–28, 30, 36, 46, 57–58, 60–61, 63,
72, 76, 89, 92, 95, 97–98, 102, 129,
131, 144, 146, 148–49, 151, 153–55,
162–63, 166, 170, 174, 177, 182–84

high-level, 12, 24, 50–53, 115–16 (see
also: C language; C++ language; Java
language; JavaScript language; Ruby
language)

individuals’ understanding of, 57,
83–84

low-level, 24 (see also: Assembly
language)

object-oriented (see: Object-Oriented
Programming)

similarities to natural languages, 50,
53–54, 123, 149

Linux, 78, 81–83, 100–103
literate programming, 50, 144. See also:

readability
literacy/literacies

of code, 11, 23, 27, 153, 184
rhetorical, 23, 74
technological, 28–29

logic, 6, 21, 25–27, 29–30, 33, 35–36,
40–43, 49, 54, 58, 60, 88, 100–101,
107, 118–19, 128–30, 140, 142, 144,
150, 153, 162, 164–65, 168–69, 171–
75, 178, 183, 186

Boolean, 22, 36, 73, 153–56, 164
procedural, 4, 6, 11, 13, 21–23, 25–27,

29–31, 35–37, 40–41, 43, 57–60,
119, 128–30, 136, 157, 161–64, 172–
73, 181, 183, 186–89

logos, 97, 170, 178, 183
loop, 24, 57–59, 132, 135, 145–46, 155,

157–64, 171–72. See also: iteration
Lovelace, Ada, 35–36

mathematics, 6, 20, 33–38, 45, 182
meaning making, 12, 20, 28–29, 40–45,

49–52, 54–55, 60–63, 68, 71, 74–
75, 86, 98, 101–2, 104–5, 107, 112,

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Master Pages

Index  •  211

115–18, 123–27, 140, 142–49, 166,
182–87, 190

in code, 151–75, 177–79
Mercurial, 124–25
meta-discourse, 12, 75, 128
method (programming), 105, 160, 163,

166–69, 172–74, 177–78, 190
Microsoft, 3, 20, 26, 76, 109, 121
Microsoft Windows, 1, 24, 87, 117
mimesis, 62
modularity, 25, 142, 165, 169–70
module, software, 89, 100, 110–11, 117,

123, 130, 135, 142, 145
Mozilla Firefox, 6, 10, 15, 78, 87, 90,

92–94, 99, 112–13, 115–17, 120–27,
130–40, 142–50, 183–84, 190. See
also: Netscape Navigator

history of, 120–23
tools for developing, 124–27, 130–

32
user preferences, 132–35

Mozilla Thunderbird, 142–44
multimodality, 129, 188. See also: com-

munication, mode(s) of

nesting, 168–69, 171
Netscape Navigator, 87, 90–92, 121. See

also: Mozilla Firefox
new media, 21, 25, 74
normalization, 88, 90, 121, 130, 136, 138,

140, 149–50

obfuscation, 62, 85, 172
object (programming), 65–66, 89, 142,

144, 146–48, 166–68, 170, 173–77
Object-Oriented Programming, 65, 116,

144, 146–47, 166
objectivity, 43, 45, 60, 84, 88, 96, 102,

119, 140
Open Source Software, 14, 28, 57, 75–85,

103–7, 120–28, 142, 145, 183

communities, 57, 75–92, 103, 105–7,
112, 123, 127–28, 145, 183

goals of, 75–87, 97–98, 123
social structures of, 78–84, 86, 94,

105, 107, 184
development of, 75–79
distribution of, 76–78, 85–87, 98, 104,

106–9
principles of, 85–86, 92–95

order. See: arrangement
Oulipo, 45–47

paratext, 21, 47–49, 63, 68
patch, software, 1, 9–10, 13, 108–12,

185
pathos, 97, 100–102, 183
persuasion. See: suasion
platform studies, 24, 26, 31
Plato, 89, 146
potential, 6–7, 20, 24–26, 31, 35, 37, 44–

46, 48, 54, 63, 68, 77, 80, 98–99,
105, 108, 112, 116–18, 120–21, 123,
126, 129, 135, 146, 173–75, 179, 186,
189

probability, 40, 42, 129, 169
procedure, 19–20, 29, 33–40, 42, 45–48,

52–56, 61–62, 65, 68, 71, 88, 119,
136, 138, 141–46, 150–51, 153–79,
186–90. See also: algorithm

process, 19–21, 23–27, 29–30, 41–42,
53–55, 75–76, 88, 92, 107, 110, 112,
116, 122–26, 128–29, 157, 169, 182–
84, 189–90

processing, expressive, 26–27
Processing IDE, 4, 63–64, 95
program, software, 1–7, 12–13, 18, 21–

23, 25–27, 31, 36, 46–47, 50–52,
55–58, 60–68, 71–72, 74, 76–78,
80–82, 84–87, 90, 95–97, 100, 103–
13, 115–24, 126–28, 130, 132–33,
136, 138–42, 144–46, 148–75, 177–
79, 182–84, 190–91

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Master Pages

212  •  Index

program, software (continued)
contributions to, 13, 27, 77–85, 88–90,

92–95, 98–100, 103–5, 112, 121–28,
130, 132, 136, 138–40, 146, 178, 190
(see also: development, software)

programming. See: development,
software

progymnasmata, 6, 150, 152, 165, 170,
173, 184

prosumer, 76, 78
prototype, 146–47, 166
pull (software practice), 106–7, 124
push (software practice). See: pull
Python language, 131

quine, 56, 60–63, 140, 183

Rails. See: Ruby on Rails
readability, 12, 22, 51, 55, 57, 62, 88, 92,

102, 132, 144, 153, 157, 159, 161,
164, 179, 171, 179

reader. See: audience
reading, 16, 22, 26, 47–49, 61–68, 118,

141, 149, 152, 178–79, 187
Red Hat Fedora, 76–78, 81–82
repetition, 58–59, 65–66, 132, 140–48,

157–61, 163, 166, 168, 170. See also:
DRY philosophy

rhetoric
digital, 10, 15–17, 30, 181–82, 185
paralogic, 28
procedural, 15, 20, 53–54, 88, 145,

152–79, 186–88
of science, 118–19
of software, 2, 5, 11–13, 30, 68, 96,

104, 119, 122, 126, 129, 185
Ruby language, 12, 50, 58–61, 88–89,

98–99, 109, 141, 144
Ruby on Rails, 88–90

Shiffman, Daniel, 63–66
situation, rhetorical, 39, 43–46, 52, 54,

74, 122, 189–90
software. See: program, software
software studies, 3, 5, 10–11, 21–26, 29–

31, 182, 185, 190
source code, 12–15, 22, 28, 50, 62, 76,

78–79, 85–86, 94, 104, 115–17, 120–
23, 157, 162–63, 167. See also: Open
Source Software

sprezzatura, 96
standardization, 88–93, 110, 126, 138–

39. See also: normalization
stasis, 170
string data type, 61, 64, 66, 135, 159,

163–68, 170–72, 177
style, 4, 20–21, 46–47, 52–57, 88–89, 96,

100–101, 105, 107, 117–18, 128, 130,
136–38, 140, 142, 145–50, 161–65,
171, 183

suasion, 16, 30, 39, 42, 47, 53–54,
67–68, 106, 118–20, 150, 171, 183,
187–90

syllogism, 40–42, 169, 172, 182. See also:
enthymeme

technical communication, 2–3, 5, 10,
27–29, 118

technology, 4–7, 11–33, 36–37, 39,
42–43, 51–55, 63, 73–76, 80–81,
112, 115, 119, 128, 151, 181, 184–
91

ubiquity of, 5, 36
term frequency, 48, 171
text(s), 13, 16, 19, 21–24, 26–28, 30, 37,

45–51, 61, 63–69, 71–73, 88, 90–91,
93, 97–98, 102, 113, 115–20, 122,
129–30, 148–53, 184–89. See also:
paratext

code as, 4–6, 10–12, 21, 23–24, 30,

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Master Pages

Index  •  213

49–51, 55–58, 61–63, 69, 71–72,
88, 97–98, 102, 115–16, 118–20,
122, 130, 135–36, 140–41, 148–51,
153–79, 187

topoi, 104–5
Torvalds, Linus, 82–83, 93, 100–102
Treeherder, 125–26

version(ing), software, 5, 72, 82, 92,
100–111, 121–25, 136–42, 144, 146,
159–64, 172–74

WannaCry, 1–2
writing. See: composition

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments In and Around Code.
E-book, Ann Arbor, MI: University of Michigan Press, 2019, https://doi.org/10.3998/mpub.10019291.
Downloaded on behalf of 3.141.202.187

	Contents
	List of Tables
	List of Practice Scripts
	List of Figures
	Introduction
	1. Toward the Rhetorical Study of Code
	What Does Rhetorical Code Studies Involve?
	Digital Rhetoric
	Critical Code Studies
	Software Studies
	Technical Communication
	Rhetorical Code Studies’ Gains and Contributions

	2. Rhetoric and the Algorithm
	From Algorithm to Algorithmic Culture
	Algorithmic Criticism in the Humanities
	Arguments in Code as Algorithmic Meaning Making
	Conclusions

	3. “I Have No Damn Idea Why This Is So Convoluted”: Analyzing Arguments Surrounding Code
	Rhetorical Scholarship on Online Discourse Communities
	The Rhetorical and Social Makeup of Open Source	Software Development Communities
	Developers’ Rhetorical Awareness of Their Coding Practices
	Conclusions

	4. Developing Arguments in Code: The Case of Mozilla Firefox
	Mozilla Firefox: A Code Study
	Conclusions

	5. Composing in Code: A Brief Engagement with JavaScript
	Procedural Progymnasmata
	Exercises in Repetition: Looping
	Exercises in Style: FizzBuzz
	Exercises in Repetition: Object Creation
	Exercises in Arrangement: Bubble Sort
	Exercises in Invention: enthymemeGenerator.js
	Conclusions

	6. Conclusions
	Rhetorical Code Studies Thus Far
	Assessing Computational Action
	A Future for Rhetorical Code Studies

	Bibliography
	Index

