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Preface 

The CYGNSS Handbook was compiled in 2015 to serve as 
a source of information about the mission and its data prod-
ucts for potential data users. The handbook was updated to 
describe multiple changes to data processing and products 
in 2022. The collaborative effort of many individuals has 
enabled its production. The organization of the handbook 
is as follows: 

Chapter 1 describes the motivation for the project and 
includes a discussion about tropical cyclones and cur-
rent technologies for observing and forecasting them, 
as well as the unique impact the CYGNSS mission will 
have on the advancement of our scientifc understanding 
in this feld. 

Chapter 2 outlines the science objectives as well as the 
baseline mission requirements. Additionally, a mission 
synopsis explains the different phases of the mission and 
provides an overview of the fow of information, the 
ground data processing, and the fight segment hardware 
required to support the mission. 

Chapter 3 explains the mission design in detail, including 
the orbital elements, the observatory, and the science 
payload. 

Chapter 4 gives the reader an overview of the data prod-
ucts at each level of processing, including descriptions of 
their temporal and spatial resolutions. 

Chapters 5 through 10 provide relevant excerpts from the 
project Algorithm Theoretical Basis Documents (ATBDs). 
The ATBDs give the reader a more comprehensive 
explanation of each level of data product, including the 

physical and mathematical descriptions of the algorithms 
used in the generation of the Science Data Products, 
an explanation of uncertainty estimates, and consider-
ations of calibration, validation, exception control, and 
diagnostics. 

Chapter 11 presents both a top-down and a bottom-up 
assessment of Level 1 (basic observable) and Level 2 
(wind speed estimate) uncertainties. 

The handbook concludes with a list of project publica-
tions in Chapter 12 and a list of acronyms in Chapter 13. 
The document concludes with an appendix describ-
ing the ocean surface bistatic scattering forward model. 
The forward model relates the state of the ocean to the 
measurements made by CYGNSS and is a fundamen-
tal mathematical framework for the science behind the 
CYGNSS data products. 

The unique role of CYGNSS in our understanding of tropi-
cal cyclones derives from its ability to use the refected signal 
from the GPS constellation in order to determine sea surface 
wind speed with unprecedented spatial and temporal cover-
age. CYGNSS is a constellation of eight low-Earth-orbiting 
microsatellites, each capable of measuring four simultaneous 
refections for a total of 32 spatially separated wind mea-
surements every second. Its use of L-band GPS signals allows 
CYGNSS to make measurements within the eyewall of hur-
ricanes with no signifcant degradation in performance aris-
ing from the intense precipitation (a signifcant concern with 
higher frequency scatterometers). As such, the CYGNSS 
mission will enable a more comprehensive understanding of 
air-sea exchange processes and thus an enhanced capabil-
ity to forecast tropical storm formation and intensifcation. 
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1. Introduction and Background 

1.1. Motivation for CYGNSS 
1.1.1. Tropical Cyclones 

Tropical cyclones (TCs) pose a threat to life and property in 
coastal locations around the globe and to vessels and struc-
tures (e.g., wind farms, oil drilling platforms) on the ocean. 
Impacts include damaging winds, storm surges, and heavy 
rains. A TC is defned by the National Oceanic and Atmo-
spheric Administration (NOAA) National Hurricane Center 
(NHC) as “a warm-core, non-frontal synoptic-scale cyclone, 
originating over tropical or subtropical waters, with orga-
nized deep convection and a closed surface wind circu-
lation about a well-defned center” (National Hurricane 
Center and Central Pacifc Hurricane Center, 2020). The 
vast majority of TCs form and reach their maximum intensity 
between 35°S and 35°N latitude, and those that make 
landfall commonly do so within this latitude band (with a 
few notable exceptions; e.g., Hurricane Sandy in 2012). 

TCs form over the ocean through the organization of 
convective thunderstorms, and air-sea exchange processes 
are critical to their formation and intensifcation. Accurate 
measurements of ocean surface winds, together with tem-
perature and moisture fuxes, are crucial to the understanding 
and prediction of TCs. In contrast to midlatitude cyclones, 
TCs possess a warm core due to latent heat released by 
condensation, while mature TCs tend to have a more axi-
symmetric structure. TCs play an important role in the global 
atmospheric energy budget via their transport of heat and 
moisture from the tropics to higher latitudes. 

1.1.2. Predicting TC Track and Intensity 

Numerical weather prediction (NWP) models are the pri-
mary tools used to predict the track (position and movement) 
and intensity of TCs. These models have traditionally been 
global in extent and comprise solutions of the atmospheric 
momentum, mass, and energy and water vapor conservation 
equations. They are commonly run on horizontal grids with 
scales of 10–20 km—suffcient to simulate large-scale and 
mesoscale circulations but too coarse to resolve the convec-
tive systems that are crucial for TC formation and evolution. 
As a result, convection, cloud microphysical processes, and 
turbulence must be approximated (or “parameterized”). 
In order to more accurately predict the evolution of TCs, 
NWP centers use data assimilation to combine short-term 

predictions with a large volume of satellite and in situ data 
to form initial conditions for NWP models. The main purpose 
of data assimilation is to provide an improved estimate of 
atmospheric conditions over what is provided by observa-
tions or a previous forecast alone. Improved initial conditions 
lead to more accurate forecasts of TC track, intensity, and 
structure. Over the past 20 years, estimates of the range of 
possible TC forecasts due to uncertainties in both physical 
parameterization schemes and model initial conditions have 
been generated using ensembles of global model forecasts. 
More recently, ensembles have been used as part of the 
data assimilation system as well. 

The leading global models used to provide guidance to 
US weather prediction are as follows: 

• NOAA Global Forecast System (GFS) 
• European Centre for Medium-Range Weather 

Forecasts (ECMWF) 
• UK Meteorological Offce (UKMET) 
• Navy Global Environmental Model (NAVGEM) 

In addition to global models, limited-area regional models 
are used to predict TC structure, track, and intensity. Regional 
model simulations encompass a smaller geographic area 
and therefore can be run with higher horizontal resolution 
than global models. In most TC-specifc limited-area simula-
tions, the innermost nested domains with the highest resolution 
are centered on the TC. As of 2015, the three US operational 
regional models currently used for TC prediction, along with 
their fnest horizontal grid spacings, are as follows: 

• NOAA Hurricane Weather Research and Forecast-
ing (HWRF): 2 km 

• Coupled Ocean Atmosphere Mesoscale Prediction 
System (COAMPS-TC): 5 km 

• NOAA Geophysical Fluid Dynamics Laboratory 
(GFDL): 9 km 

In addition to the above-listed dynamical models, statisti-
cal models, such as the statistical hurricane intensity predic-
tion scheme (SHIPS) and the logistic growth equation model 
(LGEM) are used to predict intensity. Several regions around 
the world use their own global and regional models to pre-
dict TC track and intensity. 
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After decades of focused research into TC dynamics 
and evolution, operational centers are now able to predict 
TC track out to a lead time of 5 days with a high degree of 
accuracy. But during this time, forecast skill for TC intensity 
has not kept the same pace. There are likely many reasons 
for slowing improvement in TC intensity forecasts, but the 
one that is cited often in the community is a lack of frequent 
and accurate observations of winds in the inner core of TCs. 
Specifcally, current satellite observing systems are unable to 
penetrate heavy rainfall, and in situ measurements by aircraft 
and dropsondes are limited in space and time. Paucity of 
observations of surface wind speeds in the most dynami-
cally active portion of a TC leads to (1) inaccuracies in the 
initial conditions used in subsequent model forecasts and 
(2) insuffcient information for evaluating parameterizations 
of convection and surface fuxes. The CYGNSS mission is 
designed to address these shortcomings by providing more 
accurate and timely observations of surface winds in all 
precipitation conditions. 

1.1.3. Existing Observing Capabilities 

Over 90% of the observational data that are routinely assimi-
lated into global forecast models come from geostationary 
(e.g., the Geostationary Operational Environmental Satellites 
[GOES]), and polar-orbiting (e.g., the Polar-Orbiting Envi-
ronmental Satellites [POES]) satellites. The data include radi-
ances, atmospheric motion vectors, infrared and microwave 
soundings, and GPS radio occultations. Another satellite of 
particular relevance to TCs is the Global Precipitation Mea-
surement (GPM) platform (the follow-up to the successful 
Tropical Rainfall Measuring Mission [TRMM] from 1997 to 
2014), which provides a three-dimensional view of TC struc-
ture using spaceborne scanning radar at two wavelengths. In 
addition, there are scatterometers that measure wind speed 
and direction at the ocean surface. However, these scat-
terometers are unable to provide accurate measurements in 
regions of heavy precipitation (e.g., convective regions), and 
therefore sea surface wind data in the inner core of TCs are 
lacking. Even those satellites that can penetrate heavy rain 
and view the inner core of hurricanes have revisit times that 
are too infrequent to capture the fast-evolving processes 
that lead to rapid TC development. 

If a TC poses a potential threat to the United States, 
NOAA and the US Air Force deploy the “hurricane hunter” 
aircraft inside and around the TC to better measure its central 
pressure as well as thermodynamic and dynamic character-
istics of the TC and its immediate environment. Ocean sur-
face wind speeds are measured via the stepped frequency 

microwave radiometer (SFMR). However, the quantity, sam-
pling duration, and range of aircraft missions are limited, 
and therefore only a small fraction of the total TC activity in 
the Atlantic basin is sampled by aircraft. No other nations 
measure ocean surface winds from aircraft. 

1.1.4. Unique Role of CYGNSS 

The goal of the CYGNSS mission is to understand the 
relationship among ocean surface properties, moist atmo-
spheric thermodynamics, radiation, and convective dynam-
ics in the inner core of TCs. Near surface winds are major 
contributors to, and indicators of, momentum and energy 
fuxes at the air-sea interface. An understanding of the cou-
pling between the surface winds and the moist atmosphere 
within the TC inner core is required to properly model and 
forecast its genesis and intensifcation. The CYGNSS team 
hypothesizes that the limited degree of improvement in inten-
sity forecasting in recent decades is largely due to a lack of 
observations and proper modeling of the TC inner core. The 
inadequacy in observations results from two causes: 

1. Much of the TC inner core ocean surface is obscured 
from conventional remote sensing instruments by 
intense precipitation in the eyewall and inner rain 
bands. 

2. Conventional polar-orbiting, wide-swath imag-
ers provide poor temporal sampling of the rapidly 
evolving processes associated with TC genesis and 
intensifcation. 

CYGNSS addresses these two limitations by combining 
the all-weather performance of GPS bistatic radar with the 
spatial and temporal sampling properties of a constellation 
of eight low Earth orbit observatories at an inclination of 35°. 

Each observatory contains a delay-Doppler mapping 
instrument (DDMI), which receives direct signals from GPS 
satellites as well as signals refected off the ocean surface. 
The direct signals pinpoint the location of the observa-
tory, while the refected signals respond to ocean surface 
roughness, from which wind speed is derived. Signals are 
measured at 1 Hz, and each of the eight observatories is 
capable of measuring four simultaneous refections, resulting 
in 32 wind measurements per second around the globe. This 
provides the ability to measure ocean surface winds with 
unprecedented temporal resolution and spatial coverage 
under all precipitating conditions, up to and including those 
experienced in the hurricane eyewall. 



 
 

 

 
 
 
 
 

 

 

 

 
 

 

 

 

 

 

  
 

 
 

 
 

 
 

  

  

 
 
 

1. Introduction and Background 3 

Figure 1.1. Left: GPS signal propagation and scattering geometries for ocean surface bistatic quasi- specular scatterometry. Right: Spatial 
distribution of the ocean surface scattering measured by the UK- DMC- 1 demonstration spaceborne mission, referred to as the DDM 
(Gleason, 2007). 

Figure  1.1 illustrates the propagation and scattering 
geometries associated with the GPS bistatic radar approach 
to ocean surface scatterometry. The direct GPS signal pro-
vides a coherent reference for the coded GPS transmitted 
signal. It is received by a right- hand circularly polarized 
(RHCP) receive antenna on the zenith side of the space-
craft. The quasi- specular, forward- scattered signal from the 
ocean surface is received by a downward- looking, left- hand 
circularly polarized (LHCP) antenna on the nadir side of 
the spacecraft. The properties of the scattered signal are 
sensitive to the sea surface roughness, from which local wind 
speed can be derived (Zavorotny & Voronovich, 2000). 
The scattering cross- section image produced by the Disas-
ter Monitoring Constellation (UK- DMC- 1) demonstration 
spaceborne mission is shown in Figure 1.1. Variable lag cor-
relation and Doppler shift, the two coordinates of the image, 
enable the spatial distribution of the scattering cross section 
to be resolved (Gleason et al., 2005). This type of scatter-
ing image is referred to as a delay- Doppler map (DDM). 
Estimation of the ocean surface roughness and wind speed 
is possible from two properties of the DDM. The maximum 
scattering cross section (the dark- red region in Figure 1.1) is 
related to roughness and therefore wind speed. This requires 
power calibration of the DDM. Wind speed can also be esti-
mated from the shape of the scattering cross- section pattern 
in the DDM (the red and yellow regions in Figure 1.1). The 
pattern is produced by scattering from an area surrounding 
the nominal specular point (SP) on the surface. For a smooth, 
mirrorlike surface, the pattern would be defned by the GPS 
bistatic radar ambiguity function. But as the surface becomes 

rougher, the GPS signal is scattered by a larger area of 
the surface in many directions. This causes a reduction in the 
maximum cross section near the SP and the “spreading” 
of power into wider delay- Doppler bins. The shape of the 
DDM pattern also contains information about the sea surface 
winds. In particular, the shape of its dependence on delay is 
sensitive to the signifcant wave height of the surface, which 
is correlated with wind speed. 

CYGNSS measures the power in the GPS signal scattered 
by the ocean surface after the signals are selectively fltered 
by time delay and Doppler shift to create a DDM. The time 
delay is the difference in the time of arrival between the direct 
signal (propagating directly from the GPS satellite  to the 
CYGNSS satellite) and the signal scattered by the ocean sur-
face. The Doppler shift is the difference in frequency between 
the received direct signal and the received ocean-scattered 
signal. Both delay and Doppler are varied in the DDM across 
a range that includes the nominal specular refection point on 
the surface. Shorter delays correspond to locations above 
the surface, from which there is no signifcant scattered signal. 
Longer delays can be mapped to iso- delay contours on the 
surface surrounding the SP. Varying Doppler of the scattered 
signals can also be mapped to iso- Doppler contours on the 
surface that intersect the delay contours to create the DDM. 
The DDM is thus a map of the diffuse surface scattering in the 
vicinity of the nominal SP. The transformation between spatial 
location on the sea surface and location in the DDM is one to 
one at the DDM specular location but can have ambiguities 
(i.e., multiple spatial locations mapped to the same DDM 
location) outside the specular region. 
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Figure 1.2. Each low-Earth-orbiting CYGNSS observatory will orbit at an inclination of 35° and is capable of measuring four simultaneous 
refections, resulting in 32 wind measurements per second across the Earth. The confguration is optimized for high temporal resolution wind 
feld imagery of TC genesis, intensifcation, and decay. Shown here are the CYGNSS spatial coverage tracks after (a) 90 minutes and 
(b) 24 hours. Temporal sampling is characterized by the probability and cumulative density functions of revisit time, shown in (c). Sampling 
occurs randomly due to the asynchronous nature of the CYGNSS and GPS satellite orbits, and revisit time is best characterized via statistics 
of these distributions. The median and mean revisit times are, respectively, 2.8 and 7.2 hours. 

CYGNSS spatial sampling produces Level 2 wind speed 
data products that consist of 32 simultaneous single-pixel 
“swaths” that are 25 km wide and typically hundreds of 
kilometers long, as the SPs move across the surface due to 
orbital motion by CYGNSS and the GPS satellites. Examples 
of the spatial coverage obtained after 90 minutes (one orbit) 
and 24 hours are shown in Figure 1.2a–b. Temporal and 
spatial sampling occur randomly due to the asynchronous 
nature of the CYGNSS and GPS satellite orbits. As a result, 
the CYGNSS revisit time is best described by its probability 
distribution. The distribution, shown in Figure 1.2c, is derived 
empirically by using a mission simulator to determine the time 
and location of each sample within the ±38° latitude cover-
age zone and then examining the time difference between 
samples at the same location. The empirical distribution 

features a high probability of very short revisit times (resulting 
from sequential samples by trailing satellites spaced 10 min-
utes apart) and a long, tapering “tail” at higher revisit times. 
Its median value is 2.8 hours, and the mean revisit time is 
7.2 hours. 

1.1.5. Description of Previous Airborne and 
Spaceborne Missions 

The frst global navigation satellite system refectometry 
(GNSS-R) sensor was feld tested in 1997 over the Chesa-
peake Bay, collecting GPS signals scattered from the water 
surface (Garrison et al., 1998). The frst reported wind speed 
retrieval using GPS ocean-refected signals occurred in 1999 
(Lin et al., 1999) with data taken in 1998. Additional data were 



  

 
 

        
 
 
 
 

 

 
 

 
 

 
       

 
  

   
 

 
 

 
  

  

 

 
 

  
 

 

 
  

 
 

   

   
 

 

  

 
     

 

      

 
 

  

  
  

 

 
 
 
 
 

 
  

 
 

1. Introduction and Background 5 

acquired in underfights of the Ocean TOPography Experi-
ment (TOPEX)/Poseidon in 1998 and during the US Navy 
Electro-Optical Propagation Assessment in Coastal Environ-
ments (EOPACE) experiment off the Outer Banks of North 
Carolina (Garrison et al., 2002). A theoretical framework was 
then developed that describes the received global navigation 
satellite system (GNSS) signal as a function of the sea state, the 
measurement geometry, and the signal processing performed 
by the receiver (Zavorotny & Voronovich, 2000). 

The frst effort to study the high wind regimes found in TCs 
was accomplished in 1998 with fights into the outer bands 
of Hurricane Bonnie as it made landfall near Topsail Beach, 
North Carolina. With the cooperation of NOAA, a GPS 
delay mapping receiver was installed on one of the hur-
ricane hunters in 2000 and acquired the frst GPS-refected 
data from inside a TC (Katzberg et al., 2001). Since that 
time, penetration data from TCs have been acquired nearly 
annually, with only one missing year. Wind speed retrievals 
have been compared with a large set of dropsonde data 
and show the GPS method capable of responding well to 
TC-level wind speeds (Katzberg & Dunion, 2009). 

The frst successful detection of a GPS surface-refected 
signal in space was reported by Lowe et  al. (2002). 
Subsequently, data from the GPS experiment on the UK-
DMC satellite demonstrated that signal retrievals of suffcient 
signal-to-noise ratio (SNR) could be used to perform suc-
cessful ocean wave and wind estimation (Gleason et al., 
2005, 2010; Clarizia et al., 2009, 2014). These results show 
that it is possible to detect refected GPS signals from space 
across a range of surface wind and wave conditions using a 
relatively modest instrument confguration. Notably, the UK-
DMC sensor had a lower receiver antenna gain (11.8 dBi) 
and is in a higher orbit (686 km) than the CYGNSS design 
(14 dBi and 510 km, respectively). Therefore, CYGNSS 
measurements have better sensitivity to surface roughness. 

Results from the UK-DMC experiment demonstrate a 
connection between the near surface wind speed and the 
measured DDMs. The UK-DMC measurements were made 
when the specular refection point passed within 50 km of 
an active National Data Buoy Center (NDBC) ocean buoy, 
which provides near surface (at 10 m height referenced) wind 
information (Gleason, 2013). One example of wind-retrieval 
performance using UK-DMC data is described by Clarizia 
et al. (2014), in which a minimum variance (MV) wind speed 
estimator was developed and tested. The estimator is a com-
posite of winds retrieved using fve different observables 
that are derived from the DDMs. Regression-based wind 
retrievals are developed for each individual observable 
using empirical geophysical model functions (GMFs) that 

are derived from NDBC buoy winds. The root mean square 
(RMS) error in the MV estimator, for wind speeds over the 
range 2–12 m/s–1, is 1.65 m/s–1 . 

A second GPS bistatic radar satellite experiment, fown 
on TechDemoSat-1 (TDS-1), was launched in July 2014 
and orbits at an altitude of 635 km with an inclination of 
98° and a 9:00 p.m. local time of ascending node (Jales & 
Unwin, 2015). The spaceborne payload consists of a zenith-
pointing antenna for direct GPS signal acquisition and the 
determination of SP locations on the ground, a nadir-pointing 
antenna with a peak gain of 13.3 dBi for capturing the GPS 
refection, and a remote sensing receiver called the SGR-
ReSI. The SGR-ReSI operates for 2 days out of an 8-day 
cycle, generating DDMs. Early analysis of TDS-1 measure-
ments of ocean surface wind speed indicates an RMS error 
of 2.2 m/s–1 over a dynamic range of 3–18 m/s–1 (Foti 
et al., 2015). 

1.2. Project Status Overview 
CYGNSS was selected by NASA as its frst Earth Venture mis-
sion under NASA’s Earth System Science Pathfnder (ESSP) 
program. CYGNSS is classifed as Category 3, Class D 
per NASA Procedural Requirements (NPR) 8704.5. Phase 
A efforts on the CYGNSS mission began in December 2012. 
CYGNSS launched on December 15, 2016, and has a 
2-year design lifetime. The mission is now in the extended mis-
sion phase. Principal investigator (PI) Dr. Chris Ruf of the Uni-
versity of Michigan (UM) Climate and Space Sciences and 
Engineering Department leads the team of institutions. UM is 
responsible for the science team, communications and public 
engagement, science operations and data analysis, payload 
stimulator, and overall successful execution of the mission 
and implementation of the proposed science investigations. 
The Southwest Research Institute (SwRI) is a subcontractor to 
UM and serves as the “implementing organization.” SwRI is 
responsible for overall mission project management, systems 
engineering, safety and mission assurance, procurement 
and management of the payload, spacecraft development, 
oversight of the deployment module (DM), integration and 
testing, launch vehicle interfaces, commissioning, and mis-
sion operations. Surrey Satellite Technologies provided the 
DDMI and Sierra Nevada Corporation (SNC) provided 
the DM. The eight observatories were affxed to the DM 
and then attached to the Orbital Alliant Techsystems (ATK) 
Pegasus launch vehicle. An overview of the mission’s motiva-
tion, goals, objectives, requirements, and design is given in 
Ruf et al. (2015). 
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2. Mission Overview 

2.1. Science Objectives 
2.1.1. Baseline Science Objectives 

The CYGNSS science goals are enabled by meeting the 
following mission objectives: 

• Measure ocean surface wind speed in most natu-
rally occurring precipitating conditions, including 
those experienced in the tropical cyclone eyewall. 

• Measure ocean surface wind speed in the tropi-
cal cyclone inner core with suffcient frequency to 
resolve genesis and rapid intensifcation. 

2.1.2. CYGNSS Application Areas 

A variety of applications for CYGNSS exist outside of the 
required baseline science objectives. These include, but are 
not necessarily limited to, soil moisture, hydrology, coastal 
fooding, ocean wave modeling, and numerical weather 
prediction. 

The CYGNSS mission, which will obtain denser surface 
wind feld observations to improve tropical cyclone inten-
sity forecasts, is also expected to provide new insights into 
air-sea interactions related to tropical convection and mea-
surements of soil moisture and surface water extent, as well 
as observations of ocean surface dynamics in insuffciently 
sampled regions from 38ºN to 38ºS latitude. 

In the areas of modeling, forecasting, and tropical con-
vection applications, forecast model representation of the 
Madden-Julian oscillation (MJO) could be improved. The abil-
ity to provide fast-repeat wind sampling unbiased by the pres-
ence of precipitation could enable improved observations 
of convectively induced phenomena such as westerly wind 
bursts and gust fronts. The CYGNSS fast-repeat wind sampling, 
especially in precipitating regions, will complement existing 
polar satellite ocean surface winds and should improve the 
prediction of atmospheric phenomena with connections to 
the tropics, such as monsoons, atmospheric rivers, and the 
extratropical transitions of tropical cyclones. 

For monitoring of tropical cyclones, CYGNSS surface 
wind data could be used to assess the intensity and inten-
sity change rate that are critical for coastal preparations to 
protect life and property in land-falling storms. In the areas 
of coastal, terrestrial, and hydrological applications, soil 
moisture and wetlands extent mapping with CYGNSS is 

possible. These two applications are the most mature and 
aligned with the existing capabilities of the L-band sensor 
and mission design. The fast-repeat sampling characteristics 
of CYGNSS measurements of soil moisture would add value 
to existing sensors and possibly allow studies of subdiurnal 
soil moisture, crop evolution, and food forecasting. 

In the areas of physical oceanography and surface 
wave applications, more accurate estimations of surface fuxes 
along with improved surface wind analysis products gener-
ated using CYGNSS observations will be highly valuable 
for evaluating and improving the performance of ocean and 
wave models within coupled systems. Another application is 
the use of Level 3 CYGNSS products in conjunction with other 
atmosphere-ocean observations to study climate modes such 
as the MJO and El Niño Southern Oscillation (ENSO) cycles 
that have signatures over the tropics and subtropics. 

2.2. Baseline Science Mission 
Requirements 
The CYGNSS baseline science requirements, defned to 
meet the mission objectives, are listed as follows: 

1. Provide estimates of ocean surface wind speed over 
a dynamic range of 3 to 70 m/s–1 as determined 
by a spatially averaged wind feld with a resolution 
of 5 × 5 km. 

2. Provide estimates of ocean surface wind speed dur-
ing precipitation rates up through 100 mm hr–1 as 
determined by a spatially averaged rain feld with a 
resolution of 5 × 5 km. 

3. Retrieve ocean surface wind speed with a retrieval 
uncertainty of 2 m/s–1 or 10%, whichever is greater, 
with a spatial resolution of 25 × 25 km. 

4. Collect space-based measurements of ocean surface 
wind speed at all times during the science mission with 
the following temporal and spatial sampling: (1) tem-
poral sampling better than a 12-hour mean revisit time 
and (2) spatial sampling of 70% of all storm tracks 
between 35°N and 35°S latitude to be sampled 
within 24 hours. 

5. Conduct a calibration and validation program to 
verify that the data delivered meet the requirements 
within individual wind speed bins above and below 
20 m/s–1 . 
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 6. Support the operational hurricane forecast community 
for assessment of  CYGNSS data impacts on numerical 
prediction of tropical cyclones in retrospective studies. 

2.3. Mission Synopsis 
The CYGNSS mission schedule is composed of distinct, 
sequential phases. Phase A defnes high- level mission require-
ments and culminates in the System Requirements Review 
(SRR). Phase B defnes the preliminary design of the mission 
and the relationship between the mission’s requirements and 
its design. It culminates in the Preliminary Design Review (PDR). 
Phase C defnes the detailed design of the mission— in particu-
lar, of the fight segment (consisting of the eight observatories 
and the deployment module) and of the ground segment 
(consisting of the data telemetry ground stations, the Mission 
Operations Center [MOC], the Science Operations Cen-
ter [SOC], and the NASA Distributed Active Archive Center 
[DAAC]). Phase C culminates in the Critical Design Review 

(CDR) and the System Integration Review (SIR). Phase D con-
sists of the fight segment build and test phase, followed by 
the launch vehicle integration. It culminates in the launch and 
early on- orbit engineering commissioning. Phase E consists 
of the on- orbit science mission execution, including science 
payload calibration, Science Data Product calibration and 
validation, and engagement with the wider science com-
munity of data users. Phase F occurs after the end of on- orbit 
operations and typically consists of fnal science algorithm 
revisions, a last cycle of reprocessing of the mission science 
data, and fnal archiving of data products and associated 
documentation. Figure 2.1 shows the summary mission time-
line. Table 2.1 gives a list and brief description of signifcant 
mission milestones along with their associated dates. 

2.3.1. Launch 

The eight CYGNSS satellites were affxed to a deploy-
ment module and shipped to Vandenberg Air Force Base 
for integration with the Orbital Alliant Techsystems (ATK) 
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Figure 2.1. Summary mission timeline. 



  

  
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 
 

 

  

 

 

 

 
 

 
 

 

  

 

  

 

 
 

 

 

2. Mission Overview 9 

Table 2.1. Signifcant Mission Milestones 

Completed date Description/status 

Dec. 2012 Project kickoff 

Jul. 19, 2013 KDP B, SRR completed 

Feb. 26, 2014 KDP C 

Jan. 13, 2015 Mission Critical Design Review 

Sep. 2015 Mission Readiness Review 

Dec. 15, 2017 Launch 

Jan. 4, 2017 First light! 

Jan. 16, 2017 First S/C to nadir 

Jan. 16, 2017 First S/C to 10-degree roll-off of nadir 

Feb. 25, 2017 First raw data collection 

Mar. 23, 2017 Postlaunch Acceptance Review 

May 22, 2017 First PO.DAAC delivery 

June 16, 2017 FSW v4.4 deployment complete 

Aug. 21–27 2017 Science data taken over Hurricane 
Harvey 

Sep. 5–8, Science data taken over Hurricanes Irma 
Sep. 18–21, 2017 and Maria, respectively 

Oct. 6–8, 2017 Science data taken over Hurricane Nate 

Dec. 5, 2017 FSW v4.5 deployment complete 

Sep. 21, 2018 V2.1 released to public via PO.DAAC 

Feb. 2019 End of Prime Mission Review 

Mar. 2019 Begin Extended Mission Phase E 

Spring 2020 Climate Data Record Science Data 
Product release 

Spring 2020 V3.0 Science Data Product release with 
real-time GPS EIRP tracking 

Summer 2020 Level 1 calibration over land with digital 
elevation map and coherence detection 

Key: EIRP, effective isotropic radiated power; FSW, Flight 
Software; KDP, Key Decision Point; PO.DAAC, Physical 
Oceanography Distributed Active Archive Center. 

Pegasus three-stage launch vehicle in November 2016. 
Once integrated, the Pegasus was attached to the underside 
of Orbital ATK’s L-1011 airplane and performed a ferry 
fight to Cape Canaveral Air Force Station in Florida. After 
completing fnal inspections and checkouts, the L-1011 few 
to the specifed drop location off the coast of Florida at an 
altitude of 39,000 ft. for launch on December 15, 2016. 
After approximately 8 minutes of total fight time from drop to 
stage three burnout, the eight observatories were deployed 
in opposite pairs off the deployment module. Initial orbital 
altitudes for the eight spacecraft varied from approximately 
514 to 536 km. 

2.3.2. Commissioning 

The commissioning phase included deployment of solar 
arrays, checkout of the spacecraft subsystems and payload, 
and initial drag maneuvers to spread the constellation into the 
desired spacing. The initial baseline constellation confgura-
tion was an even spacing of ~45º between observatories. 
The science coverage requirement for the mission can be met 
when the observatories ≥ 20° apart from each other. Once 
on orbit, multiple drag maneuvers were performed to adjust 
constellation spacing, with the execution of drag maneuvers 
traded off against the continuation of science mode opera-
tions to achieve a balance of continued science data fow 
and ideal constellation spacing, with the former weighted 
more heavily than the later during the Atlantic basin hurricane 
season (approximately June through November). The orbital 
position of the constellation as of May 4, 2022, is shown in 
Figure 2.2. The commissioning phase extended from launch 
until both the ground elements and the spacecraft and instru-
ment subsystems were fully functional and had demonstrated 
the required on-orbit performance to begin routine science 
data collection. The Level 1 requirements call for these activi-
ties to be completed within 60 days after launch. 

2.3.3. Operations 

The science operations phase is the period of near-continuous 
data collection extending from the end of commissioning for 
2 years. Each observatory is maintained in a nadir-pointing 
attitude, except for brief periods when drag maneuvers are 
required to maintain the constellation spacing or for potential 
collision avoidance maneuvers. Nominally, each observa-
tory is contacted once every 48 hours for commanding and 
data downlinking, an average of four contacts per day for 
the ground segment. If a suffcient number of observatories 
are still functioning adequately at the end of the 2-year base-
line mission duration, the science operations phase may be 
extended, subject to review and approval by NASA. 

Science data products are made available to the pub-
lic via NASA’s Physical Oceanography Distributed Active 
Archive Center (PO.DAAC). CYGNSS delivered the initial 
Level 1 and 2 data products 2 months after initial operational 
capability (IOC) and Level 3 data products four months after 
IOC. After the initial delivery, all data products have been 
made publically available within 6 days of the data being 
downlinked. 

2.3.4. Decommissioning 

CYGNSS postmission disposal will be accomplished via 
uncontrolled atmospheric reentry within 25 years of the end 
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Figure 2.2. CYGNSS constellation orbital confguration as of May 4, 2022. The relative space, perigee, apogee, orbital separation, 
and phase rate of each spacecraft are shown, as is the evolution of the semimajor axis of the orbit for each spacecraft. Multiple high drag 
maneuvers were employed to achieve spacing between the eight CYGNSS spacecraft adequate to meet mission-level requirements while 
maximizing constellation time in science mode. 

of the mission. As such, no systems are required to be opera-
tional, and there are no plans for any special maneuvers to 
support the disposal. The micro reaction wheels onboard 
each observatory will be commanded off at the end of the 
mission. 

2.4. Mission System Description 
In developing the design concepts for the CYGNSS obser-
vatories, the Systems Engineering team kept in mind the safety 
of the observatories without ground intervention. Providing 
onboard systems that minimize the need to develop time-
tagged command sequences for each observatory for 
routine operations also supports a simplifed operational 
cadence for maintaining the constellation. 

2.4.1. Launch Through Commissioning 

Each observatory is deployed with solar arrays stowed. After 
deployment from the launch vehicle, each observatory tran-
sitioned automatically through the initial three states to reach 
standby mode. Deployment of the solar arrays occurred 
next. Additional commissioning activities for the observatories 
began once the solar arrays were deployed and continued 
for a period of 4 weeks while the health of each spacecraft 
was confrmed. 

Commissioning activities for a CYGNSS delay-Doppler 
mapping instrument (DDMI) commenced once its microsat 
completed its commissioning sequence. DDMI commis-
sioning lasted an additional 4 weeks. During this time, the 
DDMI was operated in two engineering modes, which were 
used to verify on-orbit performance and tune the onboard 
delay-Doppler map (DDM) generation and subsampling 
algorithms. At the end of the DDMI commissioning activities, 
the instrument was transitioned into its science mode, where it 
collects data continuously, save when interrupted by sched-
uled high drag maneuvers and unscheduled safng events. 

2.4.2. Nominal Operations 

Upon completion of commissioning activities, the observato-
ries were transitioned into the science mode of operation. At 
this point, the DDMI is set to science mode for the duration of 
the mission, except as noted above for high drag maneuvers 
and safng events. In science mode, subsampled DDMs are 
generated onboard and downlinked with a 100% duty cycle. 

The observatories are designed to implement nominal 
observatory operations and science data collection with-
out onboard time-tagged command sequences. With the 
DDMI in its continuous science mode and the observatory 
set to maintain all nominal operations without additional 
commands, the primary “routine” activity performed on a 



  

 
 

 
 

 

 
 
 
 

 
 

  

 

 

 

 

 

 

 

 
 
 

 
 

 

 

 

  

 

 
  

 

 
 

 

   
 

 
 
 

 

2. Mission Overview 11 

regular basis is communication with the ground network to 
downlink the accumulated science and engineering data. 

Science and engineering data fles are generated, stored 
onboard, and automatically added to an onboard downlink 
fle list. Retrieval of the science data occurs during com-
munications passes, which occur at the rate of one pass 
per observatory every 1.5–2 days. Onboard microsat data 
storage provides storage for greater than 10 days of science 
data, allowing fexibility in pass scheduling and supporting 
recovery from loss of communications during a pass. 

Downlink pass acquisition operations are automated 
using an onboard automated event recognition (AER) 
capability. The mission operations team schedules passes 
for each observatory, and when the observatory is within 
range of the scheduled ground antenna asset, the antenna 
illuminates the microsat with a clear channel communica-
tion. On board, the AER switches the microsat transmitter on 
when the receiver detects the ground network signal. Once 
the transmitter is enabled, housekeeping telemetry is trans-
mitted, allowing the ground antenna to synchronize with the 
microsat. Once a lock has been established, a notifcation 
of the acquisition status is relayed to the CYGNSS MOC. 

After establishing contact, the following steps are 
performed: 

• Real-time housekeeping data are continuously 
transmitted by the microsat, received on the ground, 
and fowed to the MOC. 

• Based on the transmitter confguration (low or high 
speed) and idle pattern received, the microsat auto-
matically plays back the housekeeping and science 
data collected since the last pass was transmitted 
to the ground and collected at the antenna site. If a 
nonunique idle pattern is seen, the microsat waits for 
playback commands from the MOC or from the on-
board Absolute Time Sequence (ATS; time-tagged 
command sequences). 

• If needed, the MOC can send the command to 
thaw the CCSDS File Delivery Protocol (CFDP) en-
gine on board the microsat. In a nominal pass, this is 
done autonomously by the microsat. 

• Any incomplete transmissions from the previous 
pass, based on the commands from the MOC, will 
be downlinked by the microsat CFDP engine. 

• The AER system on board the microsat has a backup 
transmitter off command, which will be triggered by 
a timer that is set when the transmitter is turned on to 
ensure the transmitter is not inadvertently left on for a 
long period of time. 

• Postpass, the collected fles are transferred from 
the antenna site to the Swedish Space Corpora-
tion (SSC) Network Management Center (NMC), 
where they are then transferred to the CYGNSS 
MOC for processing and distribution. 

The raw CCSDS data fles from the remote SSC antenna 
sites are sent to the SSC NMC after the completion of the 
pass. This fow decouples the fle processing from the real-
time fow of the pass, which simplifes the operations and 
does not levy any bandwidth requirements on the links 
from the remote antenna sites to the NMC. 

Postpass, the fles collected during the pass are fowed to 
the CYGNSS MOC, where they are processed through the 
data processing system and any replay commands are gen-
erated for the next contact with the observatory if data gaps 
large enough for mission-level data coverage requirements 
to be exceeded are found. All data are then transferred to 
the SOC via automated scripts at the SOC that monitor data 
downloads at the MOC. 

2.4.3. Routine Maintenance and Calibration 

The majority of postcommissioning operations for CYGNSS 
occur using the automated features available in the micro-
sat and in the MOC. However, there are also routine microsat 
maintenance (e.g., upload of fight software updates, com-
manding of high drag and high solar beta angle power preser-
vation roll maneuvers) and DDMI special science activities (raw 
intermediate frequency [IF] and high-resolution DDM modes) 
that occur throughout the operational period of the constellation. 

Maintenance activities for the microsat do not need to 
be scheduled on a specifc cadence. Reviews of microsat 
systems and positioning information are used to assess the 
status of each subsystem as well as the location of each 
observatory to determine when maintenance activities are 
needed. Based on the type of activity, either real-time com-
manding or time-tagged command sequences are devel-
oped to perform the required activities. 

2.4.4. Ground System Overview 

The CYGNSS ground system, as shown in Figure 2.3, consists 
primarily of the MOC; existing SSC PrioraNet ground stations 
in Australia, Hawaii, and Santiago, Chile; and the SOC facil-
ity. Additional interfaces between the MOC and the microsat 
engineering team and the DDMI instrument engineering 
teams are supported. The MOC coordinates operational 
requests from all facilities and develops long-term opera-
tions plans. 
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Figure 2.3. Diagram of the  CYGNSS mission system. 

2.4.4.1. Ground Data Network— SSC 
CYGNSS selected SSC for the ground data network due 
to their experience in autonomously acquiring spacecraft 
(S/C) per our baselined approach. Colocation of a backup 
CYGNSS MOC server at the SSC NMC is also supported. 

The observatories within the  CYGNSS constellation are 
visible to three ground stations within the SSC— located in 
Hawaii, Australia, and Santiago, Chile— for periods that 
average 470– 500  seconds of visibility per pass. Each 
observatory passes over each of the three ground stations 
six to seven times each day, thus providing a large pool of 
scheduling opportunities for communications passes. 

MOC personnel schedule passes as necessary to sup-
port commissioning and operational activities. High- priority 
passes were scheduled to support the observatory solar 
array deployment for each of the constellation microsats and 
are scheduled to support anomaly resolution as issues arise 
during nominal operations. Each observatory can accom-
modate gaps in contacts with storage capacity for >10 days 
of data with no interruption of science. 

2.4.4.2. Mission Operations Center (MOC) 
During the mission, the CYGNSS MOC, located at the 
Southwest Research Institute (SwRI) Boulder location, is 
responsible for the mission planning, fight dynamics, and 
command and control tasks for each of the observatories 
in the constellation. A summary of the primary MOC tasks 
includes the following: 

• coordinating activity requests, 
• scheduling ground network passes, 
• maintaining the CFDP ground processing engine, 
• collecting and distributing engineering and science 

data, 
• tracking and adjusting the orbit location of each 

observatory in the constellation, 
• trending microsat data, 
• creating real- time command procedures or com-

mand loads required to perform maintenance and 
science activities, and 

• maintaining confguration of onboard and ground 
parameters for each observatory. 

2.4.4.3. Science Operations Center (SOC) 
The  CYGNSS SOC, located at the University of Michigan, 
is responsible for the following items: 

• support DDMI testing and validation both pre-
launch and on orbit, 

• provide science operations planning tools, 
• generate instrument command requests for the 

MOC, 
• ingest Level 0 telemetry data from the MOC, 
• produce science data Levels 1– 3, 
• ingest science data Level 4 from  CYGNSS science 

team collaborators, 



  

  

  

 
 
 

   
  

 
  

 
 

   

  
 

   

 
  

 

 
  

 

   

  
 

  
 

 

 
 

 

2. Mission Overview 13 

• perform reprocessing of science data Levels 1–3 
during the course of the mission as algorithm im-
provements are made, and 

• archive Levels 0–4 data products, DDMI com-
mands, code, algorithms, and ancillary data at a 
NASA DAAC. NASA’s Physical Oceanography 
Distributed Active Archive Center (PO.DAAC) at the 
Jet Propulsion Laboratory has been chosen as the 
archive site for the mission. 

2.4.4.4. Command and Control System 
The requirements for the MOC are to implement a command 
and control system that can handle all unique aspects of 
the CYGNSS mission. For uplink, it must support real-time 
commanding at 2,000 bps, including memory load-dump-
compare operations. On downlink, it must support ingesting 
of CFDP data, Reed-Solomon decoding, and derandomiza-
tion and include real-time telemetry display and long-term 
archival and analysis tools. For the ground segment, the tools 
need to be able to interface, confgure, and monitor the 
ground network. It is also important that the system is easily 
deployed and low cost and facilitates use by a team dis-
tributed across the country. 

The CYGNSS mission chose the Integrated Test and 
Operations System (ITOS) for its command and control sys-
tem. ITOS is a suite of software developed by the Real-Time 
Software Engineering Branch at the Goddard Space Flight 
Center and is supported by the Hammers Company. This gov-
ernment off-the-shelf (GOTS) solution also has no license costs 
for NASA missions and runs on inexpensive Linux hardware. 

ITOS itself is not uniquely customized from mission to mis-
sion. Instead, mission customization is accomplished through 
database-driven command and telemetry specifcations and 
a small set of confguration fles. This obviates the need for 
additional software development and training. The database 

includes limit checking and engineering unit confgurations 
as well as highly customizable display pages for monitor-
ing spacecraft data. The ITOS telemetry server can inter-
face across a frewall to a public server, which can display 
telemetry and events remotely via a web browser, which 
facilitates simple, real-time monitoring of the spacecraft from 
a geographically diverse mission team. 

For the success of the CYGNSS mission, it is critical for 
the command and control system to be able to defne eight 
unique and concurrent spacecraft and be able to manage 
and display data unique to each. Though the spacecraft 
are identical by design, they have unique aspects that the 
ground system must take into account, including unique com-
mand constraints, telemetry conversions, and limit checking. 
The ITOS tools provide the database elements necessary to 
support and maintain a constellation confguration. 

The CYGNSS team used ITOS throughout the spacecraft 
development, including as the main control system during 
system integration and environmental testing. This bench-to-
fight approach allows for heavy reuse of existing spacecraft 
test and operations language (STOL) procedures that were 
baselined into the Mission Operations confguration man-
agement system as the standard scripts and processes the 
team uses to fy the mission. 

The CYGNSS mission planning system takes inputs from 
fight dynamics and science activities from the SOC as well 
as event fles, such as eclipse periods and ground tracks. In 
addition, it must resolve resource conficts, such as power 
load, recorder usage, or oversubscription of ground antenna 
resources. The system must also check that planned events do 
not result in violation of fight constraints—either for a single 
observatory or for the constellation. Resolving the conficts, 
the system then generates a command load, when required, 
that is handed off to the command and control system for 
uplink to the spacecraft. 



 

 

  
 
 
 
 
 
 
 
 

  
 
 

  
  

  

 
 

  

 
 

  
 
 

   
 

  

  

  
 

   
 

 
 

       

  

 

 

 

 

3. Constellation Design 

3.1. Orbital Elements 

The baseline CYGNSS constellation design comprised 
eight observatories dispersed over a common 510 km 
circular orbit at a 35° inclination angle. Orbit insertion 
on December 15, 2016, was close to 2 σ high such that 
the constellation now operates at an average altitude of 
~527 km with an orbit eccentricity of ~ 0.0015 and an 
inclination of ~34.95°. The temporal and spatial coverage 
of the constellation depends on each of these parameters. 
A useful measure of sampling performance is the number 
of 3-hour intervals during the lifetime of a tropical cyclone 
(TC) in which at least one sample is made. A sample is 
considered made if it is located within 75 nm of the eye. 
This coverage statistic is estimated using a software simu-
lator in which CYGNSS (or other spaceborne mission) is 
fown over all TCs recorded during the 2003–7 Atlantic 
hurricane seasons. As points of comparison, the 3-hour 
coverage statistics for three heritage ocean wind scatterom-
eter missions are QuikScat on NASA SeaWinds (27.1%), 
Ocean Scatterometer (OSCAT) on Indian Space Research 
Organization (ISRO) OceanSat-2 (23.5%), and ASCAT 
Advanced Scatterometer (ASCAT) on European Organ-
isation for the Exploitation of Meteorological Satellites 
(EUMETSAT) Metop (16.7%). Applying the same analysis 
to the CYGNSS baseline design produces a 3-hour cov-
erage statistic of 33.6%. Deviations in the achieved orbit 
compared to the baseline orbit design, as described above, 
have had minimal impact on these coverage statistics. 

The 3-hour coverage statistic reduces to 32.9%–32.6% 
when one of the eight observatories is removed, depending 

on which one it is. Coverage reduces further, to 32.2%–32.8%, 
when two observatories are removed, illustrating the grace-
ful degradation in performance provided by the CYGNSS 
constellation should one or more observatories fail. 

A second statistical measure of sampling performance 
is the percentage of CYGNSS samples made in a 24-hour 
interval that are coincident with the complete historical storm 
track record for the 10-year period 2000–2009. This 24-
hour storm coverage statistic is shown in Figure 3.1 as a 
function of the number of observatories lost from the initial 
constellation of eight. A coverage statistic of 70%, which is 
consistent with the coverage that would have been provided 
by both the OSCAT and ASCAT missions operating as a 
constellation, meets the mission requirement. 

Orbit altitude can affect coverage in competing ways. 
As altitude increases, the projected antenna footprint on the 
ground grows, increasing the potential number of observ-
able GPS refections. Increasing altitude also lengthens the 
propagation path and lowers received signal strength, thus 
narrowing the usable solid angle of the antenna pattern. 
The increase in footprint size would dominate if the number 
of observable refections was allowed to grow. However, 
because the delay-Doppler mapping instrument (DDMI) 
can simultaneously observe a maximum of only four refec-
tions, coverage does not improve much above an altitude of 
~350 km. Coverage begins to decrease due to the longer 
propagation path above ~550 km. This behavior is illustrated 
in Figure 3.2. The baseline altitude of 510 km was chosen to 
satisfy the mission lifetime requirement while staying within 
the broad range indicated by this coverage analysis. The 
achieved orbit at ~527 km similarly meets these criteria. 

Figure 3.1. Dependence of 24-hour coverage on the number of observatories lost. The 70% storm coverage requirement is met by seven 
or more observatories. 
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3. Constellation Design 15 

Orbit inclination affects storm coverage in two ways. Very 
low inclination angles reduce coverage because the prevail-
ing latitudinal “corridors” favored by tropical storms become 
undersampled or missed altogether. Inclination angles too far 
above these preferred latitudes also tend to decrease cov-
erage because more time is spent over midlatitude regions 
with a low probability of TC occurrence. These competing 
dependencies are shown in Figure 3.3. The baseline mission 
design of 35° is located at the center of a broad maximum 
in coverage. 

3.2. Observatory 
The CYGNSS observatory is based on a single-string hard-
ware architecture with functional and selective redundancy 
included for critical areas. It consists of the DDMI and a 
highly integrated microsatellite. The simple operational nature 
of the DDMI and science profle allows the microsatellite to 
be designed for autonomous control during all normal sci-
ence and communication operations without the need for 
daily onboard command sequences. 

The microsatellite is a three-axis stabilized, nadir-pointed 
vehicle using a star tracker for primary attitude knowledge 

and a reaction wheel triad for control. Fixed solar arrays, 
stowed for launch and then deployed soon thereafter, pro-
vide power to the onboard peak power tracking electron-
ics for battery charging. Communication is provided by an 
S-band transceiver and low-gain patch antennas to pro-
vide near 4π steradian communications without interrupt-
ing science operations. The vehicle’s structure and thermal 
design are driven by the physical accommodation of the 
DDMI antennas, the solar arrays, and launch confguration 
constraints. 

Microsatellite performance is enabled by key nanosat-
ellite technology, specifcally the star tracker and reaction 
wheels, both provided by Blue Canyon Technologies of Boul-
der, Colorado. The form factor, mass, and power require-
ments of these components are well suited for the highly 
integrated nature of the CYGNSS observatory. The South-
west Research Institute (SwRI) avionics, including the fight 
computer, S-band transceiver, peak power tracker (PPT), and 
low-voltage power supply (LVPS), are based on heritage 
solutions that have been used on more than 20 previous 
missions. The avionics leverage recent developments in high-
density microelectronics to achieve a packaging volume of 
a 3U CubeSat—a 4:1 volume reduction. 

Figure 3.2. Dependence of 24-hour coverage on orbit altitude. The 70% storm coverage requirement is met by a wide range of altitudes. 
The 510 km baseline altitude meets the mission lifetime requirement. 

Figure 3.3. Dependence of 24-hour coverage on orbit inclination angle. The 35° baseline inclination is centered in a broad maximum of 
storm coverage dependence. 
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The mass of each observatory at launch was 29.00 
+0.00/–0.25 kg, which refects an early decision to bal-
last observatories up to a fxed target of 29 kg to ensure a 
favorable center of gravity (CG) location and limit uncer-
tainty in various analyses. Observatory power dissipation is 
~37 watts. Exploded graphic views of the observatory from 
three perspectives and the overall observatory dimensions 
with solar arrays deployed are shown in Figure 3.4a–d. 
Photographs of the fully assembled observatories are shown 
in Figure 3.5a–c. 

3.3. Science Payload 
A functional schematic of the CYGNSS science payload, 
the DDMI is shown in Figure 3.6. The DDMI performs the 
following primary tasks: 

a. It performs all the core functions of a space GPS 
receiver, with the front end supporting three single-
frequency antenna ports. 

b. It stores a quantity of raw sampled data from multiple 
front ends or processed data in its 1 GB solid-state 
data recorder. 

c. It has a dedicated feld-programmable gate array 
(FPGA) coprocessor (Virtex 4). 

The coprocessor is included for the real-time process-
ing of the raw refected GPS data into delay-Doppler 
maps (DDMs). For the coprocessor to generate DDMs of 
the sampled refected data, it needs to be primed with the 
pseudorandom noise (PRN) code of the transmitting GPS 
satellite and the estimated time delay and Doppler of the 
refection as seen from the satellite. These are calculated 

Figure 3.4a. Ram view of a CYGNSS observatory (courtesy of Keith Smith, Southwest Research Institute). 

Figure 3.4b. Wake view of a CYGNSS observatory (courtesy of Keith Smith, Southwest Research Institute). 

https://0.00/�0.25


  

 
 

 
 

 

  
  

 

 

  

 

3. Constellation Design 17 

Figure 3.4c. Underside view of a CYGNSS observatory (courtesy of Keith Smith, Southwest Research Institute). 

Figure 3.4d. Observatory overall dimensions (cm; courtesy of William Wells, Southwest Research Institute). 

Figure 3.5a. One of the eight CYGNSS observatories prior to 
integration with the deployment module. 

by the processor in conjunction with the main navigation 
solution—the data fow for this is shown in Figure 3.7. Direct 
signals (received by the zenith antenna) are used to acquire 
and track GPS signals. From the broadcast ephemerides, the 
GPS satellite positions are known. Then from the geometry of 
the position of the transmit and receive satellites, the bistatic 
radar geometry can be calculated. 

The processing of the DDM is performed on the copro-
cessor using data directly sampled from the nadir antenna. 
In common with a standard GPS receiver, the local PRN 
is generated onboard the coprocessor. As an alterna-
tive to synchronizing and decoding the refected signal in 
a stand-alone manner, the direct signals can be used to 
feed the navigation data sense and assist the synchroniza-
tion. The sampled data are multiplied by a replica carrier 

Figure 3.5b. All eight CYGNSS observatories integrated into the 
deployment module prior to fight segment vibration testing. 

and fed into a matrix that performs a Fast Fourier Transform 
(FFT) on a row-by-row basis to form the DDM, to achieve 
in effect a 7,000-channel correlator, integrating over 1 ms. 
Each point is then accumulated incoherently over 1,000 ms 
to bring the weak signals out of the noise. 



  

 

 
 

  

 

  

  

  

 

 

  
 

 
 

  
  

 

 

  
 

 
 

 
 

 

 
 

 
 

    

 

  

 

 
 
 

 
 

  
 

 

 

  
 

 
 

 

 

 

 

 
 

 
 

 
  

  

 
 
 

 

 
 

 
 

  
 

18 CCGGSS  AGDBOOK 

Figure  3.5c. CYGNSS fight segment integrated into Pegasus 
launch vehicle. 

This processing is performed in real time onboard the 
satellite, which greatly reduces the quantity of data required 
to be stored and for the satellite’s downlink. CYGNSS uses 
the DDMI in an autonomous manner, generating DDMs 
at a low data rate continuously, which provides gap-free 
measurements of the surface roughness. 

3.4. Reference 

Unwin, M., Van Steenwijk, R., Gommenginger, C., Mitch-
ell, C., & Gao, S. (2010, September). The SGR-ReSI—a 
new generation of space GNSS receiver for remote 
sensing. In Proceedings of the 23rd International Tech-
nical Meeting of the Satellite Division of the Institute 
of Navigation (ION GNSS 2010) (pp. 1061–1067). 
Manassas, VA: Institute of Navigation. 
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4. Data Product Overview 

4.1. Data Levels 

The CYGNSS mission makes three levels of data products 
available to the public. A brief description of each data 
product level is given below. A table of the products is also 
provided in Part II of this section. More detailed information 
about the processing and the products for each data level 
are provided in the Algorithm Theoretical Basis Documents 
(ATBDs) in Chapters 5 through 10. 

Level 1, 2, and 3 data products are produced in the form 
of netCDF fles and are made available to the public through 
the NASA Physical Oceanography Distributed Active Archive 
Center (PO.DAAC). The maximum data latency from space-
craft downlink to PO.DAAC availability is 6 days. 

4.1.1. Level 1 Data 

The goal of the Level 1 calibration is to attain delay-Doppler 
maps (DDMs) of bistatic radar cross sections (BRCSs), which 
will be used to determine the ocean surface wind speeds in 
proceeding algorithms. The Level 1 calibration consists of two 
parts. First, the Level 1A calibration converts the individual bins 
of raw Level 0 DDMs from processed counts into DDMs of 
received power (Pg) in units of watts. These Level 1A DDMs are 
provided at a spatial resolution of 17 delay × 11 Doppler bins, 
corresponding to a surface area of about 50 km2. Second, 
the Level 1A DDMs are converted to Level 1B DDMs of BRCS 
values by unwrapping the forward scattering model and gener-
ating two additional data products: one 17 delay × 11 Doppler 
DDM of unnormalized BRCS values (σ) in units of m2 and a 
second 17 delay × 11 Doppler DDM of effective scattering 
areas (also in units of m2). Dividing the unnormalized BRCS by 
the effective scattering area results in σ0, the normalized bistatic 
radar cross section (NBRCS). All Level 1 data products are pro-
vided at a time resolution of 1 Hz. These data products are 
generated in such a way as to allow for fexible processing 
of variable areas of the DDM, which correspond to different 
regions on the surface (Clarizia & Ruf, 2014). 

The process of quantifying the error in the Level 1 data prod-
ucts is described in detail in Chapters 5 and 7. For Level 1A, 
errors in the received power in watts, Pg, depend on wind 
speed. For ocean surface winds below 20 m/s-1 (correspond-
ing to σ0 = 20 dB), Pg has a total root sum square (RSS) error 
of 0.50 dB. For winds above 20 m/s-1 (corresponding to 
σ0 = 12 dB), Pg has an RSS error of 0.23 dB. For the Level 1B 

product, the total RSS errors for σ (including errors from the 
Level 1A calibration) are 0.82 dB (for winds below 20 m/s–1) 
and 0.70 dB (for winds above 20 m/s–1; Gleason et al., 
2016). 

Chapter 5 includes a detailed derivation of the Level 1A 
calibration and a term-by-term error analysis as well as the 
derivation of the Level 1B data products and error analysis. 
This includes analysis related to using only near specular 
DDM bins to calculate the NBRCS over a subset of DDM 
pixels, or DDM area (DDMA) used in the baseline Level 2 
wind retrieval algorithm. 

4.1.2. Level 2 Data 

The Level 2 mean square slope (MSS) product is the spatially 
averaged MSS, plus uncertainty, over a 25 × 25 km2 region 
centered at the specular point. The Level 2 wind speed prod-
uct is the spatially averaged wind speed, plus uncertainty, 
over a 25 × 25 km2 region centered at the specular point. 
Each Level 2 netCDF fle contains the wind speeds and the 
MSS generated by the entire CYGNSS constellation during 
a single Coordinated Universal Time (UTC) day. 

4.1.2.1. Level 2 MSS 
The primary mission of the CYGNSS Project is to measure 
ocean surface winds by ftting the calibrated delay-Doppler 
map peak power data to the empirical or modeled geo-
physical functions. Those functions relate the measured signal 
parameters directly to surface wind. At the same time, the 
forward scattering model based on the bistatic radar equation 
directly relates the DDM to the BRCS, which in turn can be 
characterized by the MSS of the ocean surface. Therefore, this 
Level 2 data product is available during the CYGNSS mission. 

The MSS of the ocean surface is a very important quan-
tity. It is crucial for understanding the physical processes 
at the air-sea interface and for interpreting altimeter and 
scatterometer radar backscatter measurements. The practical 
need for global MSS datasets in air-sea interaction research 
is increasingly apparent—for example, for estimating the 
dynamics of gas transfer rates across a water boundary 
layer. Another important issue related to the availability of 
MSS measurements in hurricanes is an opportunity to verify 
new advanced models of hurricane development. 

The purpose of Chapter 6 is to describe the CYGNSS 
Level 2 MSS algorithms and provide all necessary equations 
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20 CCGGSS  AGDBOOK 

for implementing the algorithm during the mission. It describes 
the physics of the problem and explains the connection 
between the BRCS and the MSS and between the MSS 
and the ocean surface spectrum. It provides a theoretical 
description of the MSS baseline retrieval algorithm. Since 
the MSS algorithm relies on the BRCS retrieval, all temporal 
and spatial resolution criteria developed in the documents 
for Level 1 are valid here as well. 

The issue of the MSS retrieval accuracy is addressed in 
Chapter 6, “Performance Characterization.” The creation of 
the Level 2 MSS product is contingent on the availability 
of  input observational data (from CYGNSS and ancillary 
data sources) and accurate estimates of their errors. The accu-
racy of the Level 2 MSS product is dependent on the accuracy 
of the BRCS retrieval, the accuracy of the scattering geometry 
determination (incidence angle), and the accuracy of the 
Fresnel refection coeffcient estimates. This error analysis of 
the Level 2 MSS retrieval algorithm is presented at the end 
of Chapter 6. 

4.1.2.2. Level 2 Wind Speeds 
The Level 2 wind speeds are obtained from two observables 
known as the delay-Doppler map average (DDMA) and the 
leading edge slope (LES; see Chapter 7, Part I). The observ-
ables are calculated from DDMs that derive from the specu-
lar point selection algorithm (illustrated in Chapter 7) over a 
limited delay and Doppler range to comply with the 25 km 
spatial resolution requirements for the CYGNSS retrieved 
winds. In cases where the true resolution is fner than 25 km, 
time averaging between consecutive observables is applied 
to further reduce the noise in the observables. An empirical 
geophysical model function (GMF) is developed separately 
for DDMA and LES, relating the observable value to the 
ground truth matchup winds and the incidence angle using 
a training subset of high-quality data. The empirical GMF 
is then used to estimate the winds from a generic dataset 
of observables independent of the training one. In addi-
tion, the degree of decorrelation between winds retrieved 
from DDMA and from LES is exploited to derive a minimum 
variance (MV) estimator, which provides improved wind 
estimates compared to DDMA or LES alone. A simple qual-
ity control fag is applied to the fnal wind speed product to 
remove nonfeasible wind values. 

The retrieval algorithm is applied and tested using match-
ups with model analysis wind felds and remotely sensed 
winds (Chapter 10). The performance and error analysis of 
the retrieval algorithm highlights that for those specular points 
acquired with high enough gain of the receiver antenna, the 
root mean square error meets the CYGNSS requirements on 

wind speed uncertainty of 2 m/s–1 for winds below 20 m/s–1 

and approaches the requirement of 10% of the measured 
wind for winds above 20 m/s–1 . In particular, the uncertainty 
is 1.8 m/s–1 for wind speeds lower than 20 m/s–1, and it is 
10.3% of the measured wind speed for winds higher than 
20 m/s–1 . 

The wind speeds retrieved using this algorithm have a 
spatial resolution of 25 km, and the estimation refers to a time 
interval between 1 and 5 seconds of data, depending on 
the amount of time averaging applied. 

Two general classes of Level 2 winds are retrieved: (1) the 
Sensor Data Record (SDR) winds, which are the CYGNSS 
real-time product, and (2) the Climate Data Record (CDR) 
winds, which use model input to improve upon the Level 1 
calibration to provide a postprocessed wind speed esti-
mate with lower uncertainty and higher stability. The general 
algorithms for both are given in Chapter 7, and the details 
of the Level 1 postprocessing used by the CDR winds are 
given in Chapter 5. 

4.1.3. Level 3 Data 

The Level 3 gridded wind product is surface wind speed 
averaged in space and time on a 0.2° latitude, longitude 
grid (Chapter 8). Each Level 3 gridded wind fle covers one 
24-hour time period for the entire CYGNSS constellation. 
This product is produced for both the Level 2 SDR and CDR 
wind speed products. In addition, there is also a storm-centric 
gridded wind product. This product reports averaged wind 
speeds from the Level 2 SDR winds in a regular 7.2° × 7.2° 
grid centered on the tropical cyclone. Gridded wind speeds 
are reported every 6 hours for each tropical cyclone, though 
some grids may be empty. Each wind speed measurement 
is made by a particular combination of CYGNSS space-
craft and GPS spacecraft. Because there are 8 CYGNSS 
spacecraft and 32 GPS spacecraft, there are 256 different 
combinations of spacecraft that combine to make measure-
ments. Details for both Level 3 gridded wind products are 
given in Chapter 8. 

In addition to winds, CYGNSS provides gridded soil 
moisture estimates. The University Corporation for Atmo-
spheric Research, University of Colorado (UCAR/CU) 
Cyclone Global Navigation Satellite System (CYGNSS) 
Soil Moisture Product is an L-band bistatic radar dataset 
that provides estimates of 0–5 cm soil moisture at a 6-hour 
discretization for the majority of the extratropics on an Equal-
Area Scalable Earth (EASE)-2 36 km grid. Details are pro-
vided in Chapter 9. 



  

 

  

 
 

 

  
         

 

  

 

 

 

 

 
 

 
 

 
 
 
 

  
   

  

 

4. Data Product Overview 21 

4.1.4. Level 4 Data 4.2. Table of Data Products 
Currently there are no Level 4 data products, but several are 4.2.1. Level 1 Data and Metadata Products 
under development by CYGNSS science team members. As 

The data and metadata contained in the Level 1 netCDF fle 
these products are released, this section will be updated in 

are shown in Table 4.1 and are current as of the writing of this 
future versions of this handbook. 

document. The most recent Level 1 data dictionary can be 
downloaded from JPL’s PO.DAAC Drive at https://podaac 
-tools.jpl.nasa.gov/drive/fles/allData/cygnss/L1. Each 
Level 1 netCDF fle contains the DDMs produced by one 

CYGNSS observatory during one UTC day and the metadata used to convert from Level 0 (raw telemetry) to Level 1 data 
products. Note that the timestamp of all values is DDM time unless otherwise indicated. LNA stands for low noise amplifer, 
Tx is the transmitting spacecraft, and Rx is the receiving spacecraft. 
Table 4.1. CYGNSS Level 1 Data and Metadata 

netCDF name Comment 

Global Values 

time_coverage_start ddm_timestamp_utc of the frst sample in the fle in ISO-8601 form 

time_coverage_end ddm_timestamp_utc of the last sample in the fle in ISO-8601 form 

time_coverage_duration The time interval between time_coverage_start and time_coverage_end in ISO-1806 form 

time_coverage_resolution The nominal time interval between samples in ISO-1806 form 

spacecraft_id The CCSDS spacecraft identifer: 
0xF7 (247): CYGNSS 1 
0xF9 (249): CYGNSS 2 
0x2B (43): CYGNSS 3 
0x2C (44): CYGNSS 4 
0x2F (47): CYGNSS 5 
0x36 (54): CYGNSS 6 
0x37 (55): CYGNSS 7 
0x49 (73): CYGNSS 8 
0x00 (0): E2ES 
0x0E (14): Engineering model 
0x0D (15): Default 
0xFF (255): Unknown 

spacecraft_num The CYGNSS spacecraft number: Ranges from 1 through 8 and 99; 1 through 8 are on-orbit 
spacecraft; 99 is the CYGNSS end-to-end simulator. 

ddm_source The source of the Level 0 DDM raw counts and metadata. 
0 = End-to-end simulator (E2ES) 
1 = GPS signal simulator 
2 = CYGNSS spacecraft 
3 = Source unknown 

ddm_time_type_selector Determines the position of ddm_timestamp_utc relative to the DDM sampling period. Set to “Middle of 
DDM sampling period” for nominal science operations. Other settings are used for prelaunch testing 
only. 
0 = Start of DDM sampling period (used for prelaunch testing only) 
1 = Middle of DDM sampling period 
2 = End of DDM sampling period (used for prelaunch testing only) 
3 = pvt_timestamp_utc (used for prelaunch testing only) 

delay_resolution DDM delay bin resolution in chips. One chip is equal to 1/1,023,000 seconds. 

(continued) 
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netCDF name Comment 

dopp_resolution DDM Doppler bin resolution in Hz 

l1_algorithm_version The version number of the L1 processing algorithm. 

lna_data_version The version number of the LNA data lookup table. 

eff_scatter_version The version number of the effective scattering area lookup table. 

ant_data_version The version number of the antenna data lookup table. 

ant_temp_version The version number of the radiometric antenna temperature lookup table. 

prn_sv_maps_version The version number of the pseudorandom number (PRN) code to space vehicle number (SVN) lookup 
table. 

gps_eirp_param_version The version number of the GPS effective isotropic radiated power parameter lookup table. 

land_mask_version The version number of the Earth land mask lookup table. 

near_land_mask_version The version number of the Earth near-land mask lookup table. 

very_near_land_mask_version The version number of the Earth very-near-land mask lookup table. 

open_ocean_mask_version The version number of the open ocean mask lookup table. 

ddm_a2d_version The version number of the DDM digital to analog power conversion lookup table. 

milky_way_version The version number of the Milky Way mask lookup table. 

fresnel_coeff_version The version number of the Fresnel coeffcient lookup table. 

brcs_uncert_lut_version The version number of the BRCS uncertainty lookup table. 

ddma_les_sel_luts_version The version number of the NBRCS (formerly known as DDMA) and LES bin selection table. 

mean_sea_surface_version The version of the mean sea surface lookup table. 

per_bin_ant_version The version of the per-bin antenna gain lookup table. 

Per-Sample Values 

ddm_timestamp_utc DDM sample time. The number of seconds since time_coverage_start with nanosecond resolution. 
Its position relative to the DDM sampling period is determined by ddm_time_type_selector. Some 
metadata required for DDM calibration are generated relative to pvt_timestamp_utc or 
att_timestamp_utc. These metadata are interpolated to ddm_timestamp_utc before being used for 
DDM calibration. Note that the DDM sampling period is not synchronized with the UTC change of 
second and can occur at any time relative to the UTC change of second. 

ddm_timestamp_gps_week The GPS week number of ddm_timestamp_utc. 

ddm_timestamp_gps_sec The GPS second of week of ddm_timestamp_utc with nanosecond resolution. 

pvt_timestamp_utc The spacecraft position and velocity epoch. The number of seconds since time_coverage_start with 
nanosecond resolution. This is the timestamp of the position and velocity reported by the delay-
Doppler mapping instrument (DDMI). This is also the timestamp of the most recent GPS pulse per 
second. 

pvt_timestamp_gps_week The GPS week number of pvt_timestamp_utc. 

pvt_timestamp_gps_sec The GPS second of week of pvt_timestamp_utc with nanosecond resolution. 

att_timestamp_utc The spacecraft attitude epoch. The number of seconds since time_coverage_start with nanosecond 
resolution. This is the timestamp of the spacecraft attitude reported by the spacecraft attitude 
determination system. 

att_timestamp_gps_week The GPS week number of att_timestamp_utc. 

att_timestamp_gps_sec The GPS second of week of att_timestamp_utc with nanosecond resolution. 

sc_pos_x The X component of the spacecraft WGS-84 reference frame Earth-centered, Earth-fxed (ECEF) 
position, in meters, at ddm_timestamp_utc. Fill value is –99999999. 

sc_pos_y The Y component of the spacecraft WGS-84 reference frame ECEF position, in meters, at 
ddm_timestamp_utc. Fill value is –99999999. 

(continued) 



  

 
 

 

 

 

 
 

 
 

 
 

 

 

 

4. Data Product Overview 23 

netCDF name Comment 

sc_pos_z The Z component of the spacecraft WGS-84 reference frame ECEF position, in meters, at 
ddm_timestamp_utc. Fill value is –99999999. 

sc_vel_x The X component of the spacecraft WGS-84 reference frame ECEF velocity, in m/s, at 
ddm_timestamp_utc 

sc_vel_y The Y component of the spacecraft WGS-84 reference frame ECEF velocity, in m/s, at 
ddm_timestamp_utc 

sc_vel_z The Z component of the spacecraft WGS-84 reference frame ECEF velocity, in m/s, at 
ddm_timestamp_utc. 

sc_pos_x_pvt The X component of the spacecraft WGS-84 reference frame ECEF position, in meters, at 
pvt_timestamp_utc. Fill value is –99999999. 

sc_pos_y_pvt The Y component of the spacecraft WGS-84 reference frame ECEF position, in meters, at 
pvt_timestamp_utc. Fill value is –99999999. 

sc_pos_z_pvt The Z component of the spacecraft WGS-84 reference frame ECEF position, in meters, at 
pvt_timestamp_utc. Fill value is –99999999. 

sc_vel_x_pvt The X component of the spacecraft WGS-84 reference frame ECEF velocity, in m/s, at 
pvt_timestamp_utc. 

sc_vel_y_pvt The Y component of the spacecraft WGS-84 reference frame ECEF velocity, in m/s, at 
pvt_timestamp_utc. 

sc_vel_z_pvt The Z component of the spacecraft WGS-84 reference frame ECEF velocity, in m/s, at 
pvt_timestamp_utc. 

nst_att_status The nano star tracker attitude status. 
0 = OK 
1 = NOT_USED2 
2 = BAD 
3 = TOO_FEW_STARS 
4 = QUEST_FAILED 
5 = RESIDUALS_TOO_HIGH 
6 = TOO_CLOSE_TO_EDGE 
7 = PIX_AMP_TOO_LOW 
8 = PIX_AMP_TOO_HIGH 
9 = BACKGND_TOO_HIGH 
10 = TRACK_FAILURE 
11 = PIX_SUM_TOO_LOW 
12 = UNUSED 
13 = TOO_DIM_FOR_STARID 
14 = TOO_MANY_GROUPS 
15 = TOO_FEW_GROUPS 
16 = CHANNEL_DISABLED 
17 = TRACK_BLK_OVERLAP 
18 = OK_FOR_STARID 
19 = TOO_CLOSE_TO_OTHER 
20 = TOO_MANY_PIXELS 
21 = TOO_MANY_COLUMNS 
22 = TOO_MANY_ROWS 

sc_roll Spacecraft roll angle relative to the orbit frame, in radians, at ddm_timestamp_utc. 

sc_pitch Spacecraft pitch angle relative to the orbit frame, in radians, at ddm_timestamp_utc. 

sc_yaw Spacecraft yaw angle relative to the orbit frame, in radians, at ddm_timestamp_utc. 

sc_roll_att Spacecraft roll angle relative to the orbit frame, in radians, at att_timestamp_utc. 

(continued) 



  

  

  

 

  

  

  

  

  

24 CCGGSS  AGDBOOK 

netCDF name Comment 

sc_pitch_att Spacecraft pitch angle relative to the orbit frame, in radians, at att_timestamp_utc. 

sc_yaw_att Spacecraft yaw angle relative to the orbit frame, in radians, at att_timestamp_utc. 

sc_lat Subsatellite point latitude, in degrees north, at ddm_timestamp_utc. 

sc_lon Subsatellite point longitude, in degrees east, at ddm_timestamp_utc. 

sc_alt Spacecraft altitude above World Geodetic System (WGS)84 ellipsoid, in meters, at 
ddm_timestamp_utc. 

zenith_sun_angle_az The azimuth angle of the Sun in the zenith antenna spherical frame, at ddm_timestamp_utc, 0 <= angle 
< 360°. See University of Michigan (UM) document 148-0336, CYGNSS Science Data Processing 
Coordinate Systems Defnitions. 

zenith_sun_angle_decl The declination angle of the Sun in the zenith antenna spherical frame, at ddm_timestamp_utc, 0 
<= angle < 180°. See UM document 148-0336, CYGNSS Science Data Processing Coordinate 
Systems Defnitions. 

zenith_ant_bore_dir_x The X component of the Earth-centered inertial (ECI) direction unit vector of the zenith antenna 
boresight at ddm_timestamp_utc. 

zenith_ant_bore_dir_y The Y component of the ECI direction unit vector of the zenith antenna boresight at 
ddm_timestamp_utc. 

zenith_ant_bore_dir_z The Z component of the ECI direction unit vector of the zenith antenna boresight at 
ddm_timestamp_utc. 

rx_clk_bias The receiver clock bias (in seconds) multiplied by the speed of light as reported by the DDMI, 
interpolated to ddm_timestamp_utc, in meters. 

rx_clk_bias_rate The receiver clock bias rate (in seconds/second) multiplied by the speed of light as reported by the 
DDMI, interpolated to ddm_timestamp_utc, in m/s. 

rx_clk_bias_pvt The receiver clock bias (in seconds) multiplied by the speed of light as reported by the DDMI, at 
pvt_timestamp_utc, in meters. 

rx_clk_bias_rate_pvt The receiver clock bias rate (in seconds/second) multiplied by the speed of light, as reported by the 
DDMI, at pvt_timestamp_utc, in m/s. 

lna_temp_nadir_starboard The temperature of the starboard antenna LNA at ddm_timestamp_utc, in °C. 

lna_temp_nadir_port The temperature of the port antenna LNA at ddm_timestamp_utc, in °C. 

lna_temp_zenith The temperature of the zenith antenna LNA at ddm_timestamp_utc, in °C. 

ddm_end_time_offset For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

bit_ratio_hi_lo_starboard For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

bit_ratio_hi_lo_port For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

bit_null_offset_starboard For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

bit_null_offset_port For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

status_fags_one_hz One Hz status fags. These fags apply to all four DDMs; 1 indicates presence of condition. 
Flag masks: 
1 = Milky way in zenith antenna feld of view 
2 = Sun in zenith antenna feld of view 
4 = Subsatellite point over open ocean 
8 = Subsatellite point latitude ascending (i.e., sc_lat is increasing) 

(continued) 
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netCDF name Comment 

Per-DDM Values 

prn_code The PRN code of the GPS signal associated with the DDM. Ranges from 0 to 32; 0 = refectometry 
channel idle; 1 to 32 = GPS PRN codes. 

sv_num The GPS unique space vehicle number that transmitted prn_code. 

track_id A track is a temporally contiguous series of DDMs that have the same prn_code. Each track in the fle 
is assigned a unique track_id starting with 1; track_id ranges from 1 to N, where N is the total number 
of tracks in the fle. 

ddm_ant The antenna that received the refected GPS signal associated with the DDM. 
0 = none 
1 = zenith (never used) 
2 = nadir_starboard 
3 = nadir_port 

zenith_code_phase The DDMI-measured code phase of the direct GPS signal for prn_code interpolated to 
ddm_timestamp_utc. 0 <= zenith_code_phase < 1023.0. 

sp_precise_delay The specular point delay at ddm_timestamp_utc, in chips. One chip is equal to 1/1,023,000 seconds. 
Calculated on the ground from zenith_code_phase, tx_pos, sp_pos, and rx_pos. 

sp_precise_dopp The specular point Doppler at ddm_timestamp_utc, in Hz. Calculated on the ground from tx_pos, 
tx_vel, rx_pos, rx_vel, sp_pos, and rx_clk_bias_rate. 

sp_ddmi_delay_correction For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

sp_ddmi_dopp_correction For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

add_range_to_sp For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

add_range_to_sp_pvt For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

sp_ddmi_dopp For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

sp_fsw_delay For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

sp_fsw_dopp For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

sp_delay_error For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

sp_dopp_error For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

fsw_comp_delay_shift For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

fsw_comp_dopp_shift For diagnostic use only. See UM document 148-0372 CYGNSS L1 netCDF Diagnostic Variables for 
more information. 

prn_fg_of_merit The range corrected gain (RCG) fgure of merit (FOM) for the DDM. Ranges from 0 to 15. The DDMI 
selects the four strongest specular points (SP) for DDM production. It ranks the strength of SPs using an 
antenna RCG map. The map converts the position of the SP in antenna azimuth and declination angles 
to an RCG FOM; 0 represents the least FOM value, and 15 represents the greatest FOM value. 

tx_clk_bias The GPS spacecraft (sv_num) clock time minus GPS constellation time in seconds times the speed of 
light, in meters. 

(continued) 
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netCDF name Comment 

sp_lat Specular point latitude, in degrees north, at ddm_timestamp_utc 

sp_lon Specular point longitude, in degrees east, at ddm_timestamp_utc 

sp_alt Altitude of the specular point relative to the WGS-84 datum in meters, at ddm_timestamp_utc, as 
calculated on the ground. Note that an approximated DTU10 mean sea surface height model is used 
to calculate the specular point altitude. 

sp_pos_x The X component of the specular point position in the ECEF coordinate system, in meters, at 
ddm_timestamp_utc, as calculated on the ground. Fill value is –99999999. 

sp_pos_y The Y component of the specular point position in the ECEF coordinate system, in meters, at 
ddm_timestamp_utc, as calculated on the ground. Fill value is –99999999. 

sp_pos_z The Z component of the specular point position in the ECEF coordinate system, in meters, at 
ddm_timestamp_utc, as calculated on the ground. Fill value is –99999999. 

sp_vel_x The X component of the specular point velocity in the ECEF coordinate system, in m/s, at 
ddm_timestamp_utc, as calculated on the ground. 

sp_vel_y The Y component of the specular point velocity in the ECEF coordinate system, in m/s, at 
ddm_timestamp_utc, as calculated on the ground. 

sp_vel_z The Z component of the specular point velocity in the ECEF coordinate system, in m/s, at 
ddm_timestamp_utc, as calculated on the ground. 

sp_inc_angle The specular point incidence angle, in degrees, at ddm_timestamp_utc. This is the angle between the 
line normal to the Earth’s surface at the specular point and the line extending from the specular point 
to the spacecraft. See UM document 148-0336, CYGNSS Science Data Processing Coordinate 
Systems Defnitions. 

sp_theta_orbit The angle between the orbit frame +Z axis and the line extending from the spacecraft to the specular 
point, in degrees, at ddm_timestamp_utc. See UM document 148-0336, CYGNSS Science Data 
Processing Coordinate Systems Defnitions. 

sp_az_orbit Let line A be the line that extends from the spacecraft to the specular point at ddm_timestamp_utc. 
Let line B be the projection of line A onto the orbit frame XY plane. sp_az_orbit is the angle between 
the orbit frame +X axis (the velocity vector) and line B, in degrees, at ddm_timestamp_utc. See UM 
document 148–0336, CYGNSS Science Data Processing Coordinate Systems Defnitions. 

sp_theta_body The angle between the spacecraft body frame +Z axis and the line extending from the spacecraft 
to the specular point, in degrees, at ddm_timestamp_utc. See UM document 148-0336, CYGNSS 
Science Data Processing Coordinate Systems Defnitions. 

sp_az_body Let line A be the line that extends from the spacecraft to the specular point, at ddm_timestamp_utc. Let 
line B be the projection of line A onto the spacecraft body frame XY plane. sp_az_body is the angle 
between the spacecraft body frame +X axis and line B, in degrees, at ddm_timestamp_utc. See UM 
document 148-0336, CYGNSS Science Data Processing Coordinate Systems Defnitions. 

sp_rx_gain The receive antenna gain in the direction of the specular point, in dBi, at ddm_timestamp_utc. 

gps_eirp The estimated effective isotropic radiated power (EIRP) of the L1 course acquisition (C/A) code signal 
within ± 1 MHz of the L1 carrier radiated by space vehicle, sv_num, in the direction of the CYGNSS 
spacecraft, in watts, at ddm_timestamp_utc. 

gps_tx_power_db_w Power input to SV Tx antenna. 

gps_ant_gain_db_i SV antenna gain in the direction of the specular point. 

gps_off_boresight_angle_deg SV antenna off boresight angle in the direction of the specular point. 

direct_signal_snr 10log(zenith signal power/zenith signal noise) at ddm_timestamp_utc. 

ddm_snr 10log(Smax/Navg), where Smax is the maximum value (in raw counts) in a single DDM bin and 
Navg is the average per-bin raw noise counts. ddm_snr is in dB, at ddm_timestamp_utc. 

(continued) 
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netCDF name Comment 

ddm_noise_foor For non–black body DDMs: Is equal to the average bin raw counts in the frst 45 delay rows of the 
uncompressed 20 × 128 DDM, in counts, at ddm_timestamp_utc. For black body DDMs: Is equal to 
the average bin raw counts in all 128 delay rows of the uncompressed 20 × 128 DDM, in counts, at 
ddm_timestamp_utc. 

inst_gain The black body noise counts divided by the sum of the black body power and the instrument noise 
power, in count/W, at ddm_timestamp_utc. 

lna_noise_fgure The LNA noise fgure, in dB, at ddm_timestamp_utc. Estimated from prelaunch characterization of LNA 
performance as a function of LNA temperature. 

rx_to_sp_range The distance between the CYGNSS spacecraft and the specular point, in meters, at 
ddm_timestamp_utc. 

tx_to_sp_range The distance between the GPS spacecraft and the specular point, in meters, at ddm_timestamp_utc. 

tx_pos_x The X component of the GPS spacecraft WGS-84 reference frame ECEF position, in meters, at 
ddm_timestamp_utc. Fill value is –99999999. 

tx_pos_y The Y component of the GPS spacecraft WGS-84 reference frame ECEF position, in meters, at 
ddm_timestamp_utc. Fill value is –99999999. 

tx_pos_z The Z component of the GPS spacecraft WGS-84 reference frame ECEF position, in meters, at 
ddm_timestamp_utc. Fill value is –99999999. 

tx_vel_x The X component of the GPS spacecraft WGS-84 reference frame ECEF velocity, in meters, at 
ddm_timestamp_utc. 

tx_vel_y The Y component of the GPS spacecraft WGS-84 reference frame ECEF velocity, in meters, at 
ddm_timestamp_utc. 

tx_vel_z The Z component of the GPS spacecraft WGS-84 reference frame ECEF velocity, in meters, at 
ddm_timestamp_utc. 

bb_nearest The time between ddm_timestamp_utc and the ddm_timestamp_utc of the closest (in time) black 
body reading, in signed seconds. A positive value indicates that the black body reading occurred 
after ddm_timestamp_utc. A negative value indicates that the block body reading occurred before 
ddm_timestamp_utc. 

radiometric_antenna_temp The top-of-atmosphere radiometric brightness temperature of the Earth at 1575 MHz and left-hand 
circular polarization, averaged over the nadir antenna pattern in which the specular point lies, in 
Kelvins. 

fresnel_coeff The square of the left-hand circularly polarized Fresnel electromagnetic voltage refection coeffcient at 
1575 MHz for a smooth ocean surface at the specular point location and incidence angle. See UM 
document 148-0361 Fresnel coeffcient calculation for more information. 

ddm_nbrcs Normalized BRCS of a 3 delay × 5 Doppler bin box that includes the specular point bin. The specular 
point bin is in the top (least delay) row and the center Doppler column of the 3 × 5 box. 

ddm_les Leading edge slope of a 3 delay × 5 Doppler bin box that includes the specular point bin. The 
specular point bin is in the top (least delay) row and the center Doppler column of the 3 × 5 box. 

nbrcs_scatter_area The scattering area of the 3 × 5 region of the DDM used to calculate ddm_nbrcs. 

les_scatter_area The scattering area of the 3 × 5 region of the DDM used to calculate ddm_les. 

brcs_ddm_peak_bin_ The zero-based delay row of the peak value in the bistatic radar cross section DDM (BRCS). Ranges 
delay_row from 0 to 16. 

brcs_ddm_peak_bin_dopp_ The zero-based Doppler column of the peak value in the bistatic radar cross section DDM (BRCS). 
col Ranges from 0 to 10. 

brcs_ddm_sp_bin_delay_row The zero-based delay row of the specular point delay in the bistatic radar cross section DDM (BRCS). 
Note that this is a foating point value. 

(continued) 
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netCDF name Comment 

brcs_ddm_sp_bin_dopp_col 

ddm_brcs_uncert 

quality_fags 

The zero-based Doppler column of the specular point Doppler in the bistatic radar cross section DDM 
(BRCS). Note that this is a foating point value. 

Uncertainty of the BRCS. 

Per-DDM quality fags; 1 indicates presence of condition. Flag bit masks: 

1/0x00000001 = poor_overall_quality: the logical OR of large_sc_attitude_err, 
black_body_ddm, ddmi_reconfgured, spacewire_crc_invalid, ddm_is_test_pattern, channel_idle, 
low_confdence_ddm_noise_foor, sp_over_land, sp_very_near_land, large_step_noise_foor, 
large_step_lna_temp, direct_signal_in_ddm, low_confdence_gps_eirp_estimate, rf_detected, 
brcs_ddm_sp_bin_delay_error, brcs_sp_bin_dopp_error, gps_pvt_sp3_error, brcs_lut_range_error, 
ant_data_lut_range_error, bb_framing_error, fsw_comp_shift_error. 

2/0x00000002 = s_band_powered_up: Set if S-band transmitter is powered up. 

4/0x00000004 = small_sc_attitude_err: Set if the absolute value of the spacecraft roll is between 1° 
and 30°, the pitch is between 1° and 10°, or the yaw is between 1° and 5°. 

8/0x00000008 = large_sc_attitude_err: Set if the absolute value of the spacecraft roll is greater than 
or equal to 30°, the pitch is greater than or equal to 10°, or the yaw is greater than or equal to 5°. 

16/0x00000010 = black_body_ddm: Set if the black body load was selected during the DDM 
sampling period. 

32/0x00000020 = ddmi_reconfgured: Set if the DDMI was reconfgured during the DDM sampling 
period. 

64/0x00000040 = spacewire_crc_invalid: Set if the DDM Cyclic Redundancy Check (CRC) 
transmitted from the DDMI to the spacecraft computer was not valid. 

128/0x00000080 = ddm_is_test_pattern: Set if the DDM is a test pattern generated by the DDMI. 

256/0x00000100 = channel_idle: Set if this refectometry channel was not tracking a PRN. 

512/0x00000200 = low_confdence_ddm_noise_foor: Set if the difference between this DDM 
noise foor and the previous DDM noise foor is greater than 10%. 

1024/0x00000400 = sp_over_land: Set if the specular point is over land. 

2048/0x00000800 = sp_very_near_land: Set if the specular point is within 25 km of land. 

4096/0x00001000 = sp_near_land: Set if the specular point is within 50 km of land. 

16384/0x00004000 = large_step_lna_temp: Set if the LNA temperature rate of change is greater 
than 1°C per minute. 

32768/0x00008000 = direct_signal_in_ddm: Set if the absolute value of the difference between the 
direct signal code phase and the DDM signal code phase is less than or equal to 4. 

65536/0x00010000 = low_confdence_gps_eirp_estimate: Set when there is low confdence in the 
GPS effective isotropic radiated power estimate. 

131072/0x00020000 = rf_detected: Set when the kurtosis of the DDM noise foor deviates from 
pure Gaussian (3.0) by more than 1.0. 

262144/0x00040000 = brcs_ddm_sp_bin_delay_error: Set if the calculated specular point bin 
zero-based delay row is less than 6 or greater than 10. 

524288/0x00080000 = brcs_ddm_sp_bin_dopp_error: Set if the calculated specular point bin 
zero-based Doppler column is less than 4 or greater than 6. 

1048576/0x00100000 = neg_brcs_value_used_for_nbrcs: Set if any bin in the 3 × 5 BRCS area 
used to calculate ddm_nbrcs has a negative value. 

2097152/0x00200000 = gps_pvt_sp3_error: Cannot calculate GPS SV position/velocity/time from 
SP3 fle. 

4194304/0x00400000 = sp_non_existent_error: Specular point does not exist. 

(continued) 
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netCDF name Comment 

8388608/0x00800000 = brcs_lut_range_error: Unable to index into BRCS uncertainty lookup 
table. 

16777216/0x01000000 = ant_data_lut_range_error: Unable to index into antenna data lookup 
table. 

33554432/0x02000000 = bb_framing_error: Insuffcient black body data for calibration. 

67108864/0x04000000 = fsw_comp_shift_error: Flight software telemetry encoding error of the 
fsw_comp_delay_shift and fsw_comp_dopp_shift variables. Corrected in Flight Software (FSW) 
version 4.5. 

134217728/0x08000000 = low_quality_gps_ant_knowledge: The directional gain pattern of the 
GPS transmit antenna, and hence the value of its gain in the direction of the specular point, is less well 
known for block IIF GPS satellites. This fag indicates that Level 1 calibration was based on a GPS 
antenna gain value with a higher than normal uncertainty. The impact on retrieved wind speed values 
is typically less than 1 m/s at low to moderate wind speeds, so this is considered a nonfatal fag. 

268435456/0x10000000 = sc_altitude_out_of_nominal_range: The spacecraft’s altitude is out of 
nominal altitude range. Nominal altitude is defned as between 490 km and 550 km. 

Per-Bin Values 

raw_counts 17 × 11 array of DDM bin raw counts. These are the uncalibrated power values produced by the 
DDMI. 

power_digital 17 × 11 array of DDM bin digital power, watts. See power_analog for more information. 

power_analog 17 × 11 array of DDM bin analog power, watts. analog_power is the true power that would have 
been measured by an ideal (analog) power sensor. power_digital is the power measured by the 
actual 2-bit sensor, which includes quantization effects. power_analog has been corrected for 
quantization effects. 

brcs 17 × 11 array of DDM bin bistatic radar cross section, m2. The specular point is located in DDM bin 
round(brcs_ddm_sp_bin_delay_row), round(brcs_ddm_sp_bin_dopp_col). 

eff_scatter 17 × 11 array of DDM bin effective scattering area, m2. This is an estimate of the true surface scattering 
area that contributes power to each DDM bin after accounting for the GPS signal spreading function. 
It is calculated by convolving the GPS ambiguity function with the surface area that contributes power 
to a given DDM bin as determined by its delay and Doppler values and the measurement geometry. 
The specular point bin location matches the specular point bin location in BRCS. 
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4.2.2. Level 2 Data and Metadata Products data dictionary can be downloaded from JPL’s PO.DAAC 
Drive at https://podaac-tools.jpl.nasa.gov/drive/fles/The Level 2 data and metadata in effect at the writing of this 
allData/cygnss/L2. handbook are listed in Table 4.2. The most recent Level 2 

Table 4.2. CYGNSS Level 2 Data and Metadata 

Name Comment 

Global values 

time_coverage_start sample_time of the frst sample in the fle in ISO-8601 form. 

time_coverage_end sample_time of the last sample in the fle in ISO-8601 form. 

time_coverage_duration The time interval between test_coverage_start and test_coverage_end in ISO-8601 form. 

time_coverage_resolution The nominal time interval between samples in ISO-8601 form. 

ddm_source The source of the Level 0 DDM raw counts and metadata utilized to derive wind_speed. 
0 = E2ES (CYGNSS end-to-end simulator) 
1 = GPS signal simulator 
2 = CYGNSS spacecraft 
3 = Source unknown 

nbrcs_les_sel_lookup_ The GMF NBRCS and LES selection lookup table version number. 
tables_version 

time_averaging_lookup_ The GMF time-averaging lookup table version number. 
tables_version 

nbrcs_wind_lookup_tables_ The GMF NBRCS to wind speed lookup table version number. 
version 

les_wind_lookup_tables_ The GMF LES to wind speed lookup table version number. 
version 

covariance_lookup_tables_ The GMF minimum covariance lookup table version number. 
version 

standard_deviation_lookup_ The GMF standard deviation lookup table version number. 
table_version 

l2_algorithm_version Level 2 processing algorithm version number. 

source Level 1 netCDF source fle names. 

Per-sample values 

spacecraft_id The CCSDS spacecraft identifer: 
0xF7 (247): CYGNSS 1 
0xF9 (249): CYGNSS 2 
0x2B (43): CYGNSS 3 
0x2C (44): CYGNSS 4 
0x2F (47): CYGNSS 5 
0x36 (54): CYGNSS 6 
0x37 (55): CYGNSS 7 
0x49 (73): CYGNSS 8 
0x00 (0): E2ES 
0x0E (14): engineering model 
0x0D (15): default 
0xFF (255): unknown 

spacecraft_num The CYGNSS spacecraft number: Ranges from 1 to 8 and 99; 1 to 8 are on-orbit spacecraft; 99 is 
the CYGNSS end-to-end simulator. 

prn_code The PRN code of the GPS signal associated with the DDMs utilized to derive wind_speed. Ranges 
from 0 to 32; 0 = refectometry channel idle; 1 to 32 represents PRN code. 

continued 
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Name Comment 

sv_num The GPS unique space vehicle number that transmitted prn_code. 

antenna The CYGNSS nadir antenna that received the refected GPS signal associated with the DDMs utilized 
to derive wind_speed. 
0 = none 
1 = zenith (never used) 
2 = nadir_starboard 
3 = nadir_port 

sample_time The mean of ddm_timestamp_utc of the DDMs that were utilized to derive wind_speed. 
Note that the DDM sampling period is not synchronized with the UTC change of second, so 
sample_time can occur at any time relative to the UTC change of second. 

lat The mean of the specular point latitudes of the DDMs that were utilized to derive wind_speed, 
degrees north. 

lon The mean of the specular point longitudes of the DDMs that were utilized to derive wind_speed, 
degrees east. 

sc_lat The mean of the subsatellite point latitudes of the DDMs that were utilized to derive wind_speed, 
degrees north. 

sc_lon The mean of the subsatellite point longitudes of the DDMs that were utilized to derive wind_speed, 
degrees east. 

sc_alt The mean of the satellite altitudes above the WGS-84 ellipsoid of the DDMs that were utilized to 
derive wind_speed, meters. 

wind_speed The average surface wind speed of the 25 × 25 km cell centered on latitude and longitude derived 
from both the NBRCS and the LES observables using the fully developed seas geophysical model 
function, m/s. Multiple DDMs are utilized to derive wind_speed. The number of utilized DDMs ranges 
from 1 to 5. 

fds_nbrcs_wind_speed The average surface wind speed of the 25 × 25 km cell centered on latitude and longitude derived only 
from the NBRCS observable using the fully developed seas geophysical model function, m/s. Multiple 
DDMs are utilized to derive fds_nbrcs_wind_speed. The number of DDMs ranges from 1 to 5. 

fds_les_wind_speed The average surface wind speed of the 25 × 25 km cell centered on latitude and longitude derived 
only from the LES observable using the fully developed seas geophysical model function, m/s. 
Multiple DDMs are utilized to derive fds_les_wind_speed. The number of DDMs ranges from 1 to 5. 

wind_speed_uncertainty Standard deviation of the additive wind speed error in the minimum variance fully developed seas 
wind speed retrieval (dependent on the RCG of the specular point location, the block type of the GPS 
satellite, and the wind speed), in m/s. 

yslf_nbrcs_wind_speed The surface wind speed centered on latitude and longitude derived only from the NBRCS observable 
using the young seas / limited fetch geophysical model function, m/s. Multiple DDMs are utilized to 
derive wind_speed. The number of utilized DDMs ranges from 1 to 5. 

yslf_les_wind_speed The surface wind speed centered on latitude and longitude derived only from the LES observable 
using the young seas / limited fetch geophysical model function, m/s. Multiple DDMs are utilized to 
derive wind_speed. The number of utilized DDMs ranges from 1 to 5. 

yslf_nbrcs_wind_speed_ Standard deviation of the additive wind speed error in yslf_nbrcs_wind_speed (dependent on the 
uncertainty RCG of the specular point location, the block type of the GPS satellite, and the wind speed), in m/s. 

yslf_les_wind_speed_ Standard deviation of the additive wind speed error in yslf_les_wind_speed (dependent on the RCG 
uncertainty of the specular point location, the block type of the GPS satellite, and the wind speed), in m/s. 

mean_square_slope The average MSS of the 25 × 25 km cell centered on latitude and longitude, unitless. 

mean_square_slope_ The uncertainty of mean_square_slope, unitless. 
uncertainty 

continued 
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Name Comment 

incidence_angle The mean of the incidence angles of the specular points of the DDMs that were utilized to derive 
wind_speed, degrees. 

azimuth_angle The mean of the orbit frame azimuth angles of the specular points of the DDMs that were utilized to 
derive wind_speed, degrees. 

nbrcs_mean The mean of the DDM NBRCS values that were utilized to derive wind_speed, unitless. 

les_mean The mean of the DDM LES values that were utilized to derive wind_speed, unitless. 

range_corr_gain The mean of the RCGs of the DDMs that were utilized to produce wind_speed. Individual RCGs are 
equal to the receive antenna gain in the direction of the specular point multiplied by 1e27 divided 
by the square of the receiver to the specular point range and the square of the transmitter to specular 
point range. Units: 1e27 *dBi * m^-4 

fresnel_coeff The square of the left-hand circularly polarized Fresnel electromagnetic voltage refection coeffcient 
at 1575 MHz for a smooth ocean surface at latitude, longitude. See UM document 148-0361 for a 
description of the calculation of the Fresnel coeffcient, unitless. 

num_ddms_utilized The number of DDMs averaged together to produce wind_speed. The number of DDMs utilized 
depends on the incidence angle. Ranges from 1 to 5. 

sample_fags Set of fags indicating general conditions for the sample, set to 1 if condition is true. Flag bit masks: 
1 = low_quality_gps_ant_knowledge. The directional gain pattern of the GPS transmit antenna, and 
hence the value of its gain in the direction of the specular point, is less well known for block type IIF 
GPS satellites. This fag indicates that Level 1 calibration was based on a GPS antenna gain value with 
a higher than normal uncertainty. The increase in uncertainty at higher wind speeds is refected in the 
uncertainty data felds. 

fds_sample_fags Set of fully developed seas (FDS) status fags, set to 1 if condition is true. Flag bit masks: 
1 = fatal_composite_wind_speed_fag, logical OR of fatal FDS fags (fatal_neg_wind_speed 
OR fatal_high_wind_speed OR fatal_retrieval_ambiguity OR fatal_low_range_corr_gain OR 
fatal_single_observable OR fatal_low_quality_gps_ant_knowledge) 
2 = non_fatal_neg_wind_speed_fag, –5 < wind_speed < 0 m/s 
4 = non_fatal_neg_fds_nbrcs_wind_speed, –5 < fds_nbrcs_wind_speed < 0 m/s 
8 = non_fatal_neg_fds_les_wind_speed, –5 < fds_les_wind_speed < 0 m/s 
16 = fatal_neg_wind_speed, wind_speed <= –5 m/s 
32 = fatal_neg_fds_nbrcs_wind_speed, fds_nbrcs_wind_speed <= –5 m/s 

64 = fatal_neg_fds_les_wind_speed, fds_les_wind_speed <= –5 m/s 
128 = fatal_high_wind_speed, fatal_high_fds_nbrcs_wind_speed and 
fatal_high_fds_les_wind_speed are both 1 
256 = fatal_high_fds_nbrcs_wind_speed, nbrcs_mean corresponds to a wind speed > maximum FDS 
NBRCS lookup table wind speed at incidence_angle 
512 = fatal_high_fds_les_wind_speed, les_mean corresponds to a wind speed > maximum FDS LES 
lookup table wind speed at incidence_angle 

1024 = non_fatal_ascending, satellite is on the ascending node of the orbit (subsatellite point latitude 
is increasing) 
2048 = fatal_retrieval_ambiguity, wind_speed was derived from both fds_nbrcs_wind_speed and 
fds_les_wind_speed AND the absolute value of the difference between fds_nbrcs_wind_speed and 
fds_les_wind_speed is > 10.0 m/s 
4096 = fatal_single_observable, wind_speed was derived from a single observable, either 
fds_nbrcs_wind_speed or fds_les_wind_speed but not both 
8192 = fatal_low_range_corr_gain, range_corr_gain < 1 
16384 = fatal_low_quality_gps_ant_knowledge. The directional gain pattern of the GPS transmit 
antenna, and hence the value of its gain in the direction of the specular point, is less well known for 
block type IIF GPS satellites. This fag indicates that Level 1 calibration was based on a GPS antenna 
gain value with a higher than normal uncertainty. The increase in uncertainty at higher wind speeds is 
refected in the wind_speed_uncertainty data feld. 

continued 
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Name Comment 

yslf_sample_fags Set of young seas limited fetch (YSLF) status fags, set to 1 if condition is true. Flag bit masks: 
1 = fatal_composite_yslf_wind_speed, logical OR of fatal YSLF fags 
(fatal_neg_yslf_wind_speed OR fatal_high_yslf_wind_speed OR fatal_low_range_corr_gain OR 
fatal_low_quality_gps_ant_knowledge) 
2 = spare_3, always zero 
4 = spare_4, always zero 
8 = fatal_neg_yslf_wind_speed, non_fatal_neg_yslf_nbrcs_wind_speed and 
non_fatal_neg_yslf_les_wind_speed are both 1 
16 = non_fatal_neg_yslf_nbrcs_wind_speed, yslf_nbrcs_wind_speed <= –5 m/s 
32 = non_fatal_neg_yslf_les_wind_speed, yslf_les_wind_speed <= –5 m/s 

64 = spare_5, always zero 
128 = fatal_high_yslf_wind_speed, either fatal_high_yslf_nbrcs_wind_speed or 
fatal_high_yslf_les_wind_speed is 1 (or both are one) 
256 = fatal_high_yslf_nbrcs_wind_speed, nbrcs_mean corresponds to a YSLF wind speed ≥ 
99.9 m/s 
512 = fatal_high_yslf_les_wind_speed, les_mean corresponds to a YSLF wind speed ≥ 99.9 m/s 

1024 = non_fatal_ascending, satellite is on the ascending node of the orbit (subsatellite point latitude 
is increasing) 
2048 = spare_6, always zero 
4096 = spare_7, always zero 
8192 = fatal_low_yslf_range_corr_gain, range corrected gain of the DDM used for YSLF winds is < 1 
16384 = fatal_low_quality_gps_ant_knowledge. The directional gain pattern of the GPS transmit 
antenna, and hence the value of its gain in the direction of the specular point, is less well known for 
block IIF GPS satellites. This fag indicates that Level 1 calibration was based on a GPS antenna 
gain value with a higher than normal uncertainty. The increase in uncertainty at higher wind speeds is 
refected in the yslf_nbrcs_wind_speed_uncertainty and yslf_les_wind_speed_uncertainty data felds. 

sum_neg_brcs_values_ 
used_for_nbrcs_fags 

The number of DDMs utilized to produce wind_speed that used at least one negative BRCS value to 
calculate NBRCS. Ranges from 1 to 5. 

Per-DDM values 

Wind retrievals are produced utilizing from one to fve DDMs. The values below are fve element arrays, which contain per-DDM 
values. The DDMs that were utilized for wind retrieval are indicated by the ddm_obs_utilized_fag array. Unutilized DDMs are 
assigned fll values. 

ddm_obs_utilized_fag A fve-element array, one element per DDM. Each element is a fag set to 1 if the corresponding 
DDM was utilized to produce wind_speed. 

ddm_sample_index A fve-element array, one per DDM. Contains the Level 1 netCDF sample index of the corresponding 
DDM. Can be utilized together with ddm_channel, spacecraft_num and “source” to look up the 
corresponding Level 1 DDM data and metadata. 

ddm_channel A fve-element array, one per DDM. Contains the Level 1 netCDF refectometry channel of the 
corresponding DDM. Can be utilized together with the ddm_sample_index, spacecraft_num and 
“source” to look up the corresponding Level 1 DDM data and metadata. 

ddm_les A fve-element array, one element per DDM. Contains the corresponding DDM leading edge slope 
value, unitless. 

ddm_nbrcs A fve-element array, one element per DDM. Contains the corresponding DDM normalized bistatic 
radar cross section value, unitless. 
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4.2.3. Level 3 Data and Metadata Products data dictionary can be downloaded from JPL’s PO.DAAC 
Drive at https://podaac-tools.jpl.nasa.gov/drive/fles/The Level 3 data and metadata in effect at the writing of this 
allData/cygnss/L3. handbook are listed in Table 4.3. The most recent Level 3 

Table 4.3. CYGNSS Level 3 Data and Metadata 

Global values 

Time Timestamp coordinate at the center of the 1 hr bin, at 1 hr resolution. Range is one UTC day. 
(time) 

Latitude Latitude coordinate at the center of the 0.2° bin, degrees_north, at 0.2° resolution. Range is 
(lat) –39.9 to 39.9. 

Longitude Longitude coordinate at the center of the 0.2° bin, degrees_east, at 0.2 °resolution. Range is 0.1 
(lon) to 359.9. 

Wind speed Minimum variance estimate of the mean wind speed in the bin over the spatial and temporal 
(wind_speed) intervals specifed by the bin’s boundaries. This is done using an inverse-variance weighted 

average of all Level 2 samples of the wind speed that were made within the bin. 

Wind speed uncertainty Standard deviation of the error in the mean of all Level 2 samples of the wind speed within the 
(wind_speed_uncertainty) bin. 

Young sea limited fetch wind Minimum variance estimate of the young sea limited fetch mean wind speed in the bin over the 
speed spatial and temporal intervals specifed by the bin’s boundaries. This is done using an inverse-
(yslf_wind_speed) variance weighted average of all Level 2 samples of the wind speed that were made within the 

bin. 

Young sea limited fetch wind Standard deviation of the error in the mean of all Level 2 samples of the young sea limited fetch 
speed uncertainty wind speed within the bin. 
(yslf_wind_speed_uncertainty) 

Number of wind speed samples The number of Level 2 wind speed samples used to calculate wind_speed. 
(num_wind_speed_samples) 

Mean square slope Minimum variance estimate of the mean MSS in the bin over the spatial and temporal intervals 
(mean_square_slope) specifed by the bin’s boundaries. This is done using an inverse-variance weighted average of all 

Level 2 samples of the MSS that were made within the bin. 

Mean square slope uncertainty Standard deviation of the error in the mean of all Level 2 samples of the MSS within the bin. 
(mean_square_slope_uncertainty) 

Number of mean square slope The number of Level 2 MSS samples used to calculate mean_square_slope. 
samples 
(num_mss_samples) 

Next, Chapters 5–10 provide the reader with relevant 
excerpts from the ATBDs, which describe the physical and 
mathematical descriptions of the algorithms used in the 
generation of Science Data Products in more detail. The 
ATBDs include a description of variance and uncertainty 
estimates and considerations of calibration and validation, 
exception control, and diagnostics. Internal and external 
data fows are also described. Users requiring more infor-
mation than what is found in this section should consult 
Chapters 5–10 as well as the appendix (Ocean Surface 
Bistatic Scattering Forward Model) found at the end of 
this handbook. 
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5. Instrument Calibration and Error Analysis 

5.1. Instrument Level 0 Measurements 

This is a portion of the overall Level  1 (L1) Calibration 
Algorithm Theoretical Basis Document (ATBD) describing 
the Level 1A (L1A) calibration and error analysis (Gleason 
et al., 2019). 

Individual bins of the delay-Doppler map (DDM) generated 
by the delay-Doppler mapping instrument (DDMI) are mea-
sured in raw, uncalibrated units referred to as “counts.” These 
counts are linearly related to the total signal power processed 
by the DDMI. In addition to the ocean surface scattered GPS 
signal, the total signal includes contributions from the thermal 
emission by the Earth and by the DDMI itself. The power in the 
total signal is the product of all the input signals multiplied by 
the gain of the DDMI receiver. L1A calibration converts each 
bin in the DDM from raw counts to units of watts. A fowchart 
of the L1A calibration procedure is shown in Figure 5.1. 

5.1.1. Calibration Intervals 

The black body calibration will be performed every 60 sec-
onds on orbit for each nadir science antenna. The routine 

Figure 5.1. Overview of CYGNSS L1A calibration. The switches 
to the calibration load on each of the nadir antennas are per-
formed every 60 seconds to obtain an estimate of the instrument-
only noise counts CB. This in combination with the estimated DDM 
noise foor CG, black body load physical temperature TI and pre-
launch characterized instrument noise power P r are used to gener-
ate the calibrated L1A DDMs. 

calibration will be performed at 1 Hz on all DDM output by 
the DDMI (4 per second). 

5.1.2. Level 0 Delay-Doppler Map 

The DDM values output from the CYGNSS science instru-
ment will be sent to the CYGNSS spacecraft as arbitrary 
counts. The count values will be a result of the signal traveling 
through the various stages of the instrument, which will add 
a gain to the received power levels. The value of the pixels 
in the DDM in arbitrary counts can be linked to the arriving 
signal power in watts such that 

˜ ( °P ° P ), (5.1)C G Pa r g 

where 

C are the DDM values in counts output from the instru-
ment at each delay-Doppler bin. 

P a is the thermal noise power received by the antenna 
in watts. 

P r is the thermal noise power generated by the instru-
ment in watts. 

P g is the scattered signal power received by the 
instrument in watts. 

G is the total instrument gain applied to the incoming 
signal and noise in counts per watt. 

The terms C and P g are functions of delay and Doppler, 
while P a and P r are assumed to be independent of the delay-
Doppler bin in the DDM. Every DDM includes a number 
of delay bins where signal power is not present and an 
individual DDM noise foor level can be estimated. These 
bins physically represent delays above the ocean surface. 
These delay and Doppler bins provide an estimate of the 
DDM noise power, expressed in counts as 

CN ˜ G P( a °P )r . (5.2) 

Assuming P a and P r are independent of delay and Dop-
pler, the DDM samples above the ocean surface can be 
used to estimate the noise-only contribution to the raw counts 
expressed in Equation 5.1. 
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5.1.3. Noise Power Expressions 

The input antenna noise can be generically expressed as 

P ˜ kT B  , (5.3)a a W 

where T a is the top of the atmosphere brightness temperature 
integrated over the receive antenna pattern, k is Boltzmann’s 

1
constant, and B ˜ ˜1000Hz is the signal bandwidth (Ruf W Ti 

et al., 2016). The bandwidth of the GPS signal at the antenna 
is determined by the coherent integration processing interval, 
which is Ti = 1 ms. When the instrument input is switched to 
the calibration load, the input antenna noise becomes 

PB ˜ kTB  , (5.4)I W 

where PB and TI are the noise power and effective tempera-
ture of the instrument black body load source. The black body 
load resistor lies on the thermal continuous LNA main board, 
where the temperature sensor is located, thus the black body 
(BB) load temperature and LNA portion of the instrument 
are assumed to be nearly equivalent (Jansen et al., 1995). 
TI refers to the physical temperature of the instrument LNA 
and black body load resistor in this analysis. The instrument 
thermal noise power can be expressed as a function of the 
instrument noise fgure 

˜ T B  ˜ [( F (5.5)P k  k N  °1)290]B ,r r W W 

where P r and T r are the instrument noise power and tempera-
ture. The receiver noise fgure NF is directly related to the 
instrument noise temperature. The noise fgure versus temper-
ature profle was characterized prelaunch for all instrument 
LNAs, providing an accurate estimate of the instrument noise 
fgure as a function of temperature, from which the instrument 
noise power can be calculated using Equation 5.5. 

5.1.4. Instrument Calibration Measurements 

The instrument noise power will be initially calculated using 
gain and noise fgure temperature profles generated pre-
launch for both instrument LNAs on each satellite. Using these 
tables, the instrument noise power can be estimated directly 
from the LNA temperature T r and Equation 5.5. Subsequently, 
the expression for the DDM noise counts when the instru-
ment is switched to the black body calibration load can be 
calculated as 

C ˜ G P( ° P ), (5.6)B B r 

where PB is the black body noise power and P r is the instrument 
power. PB can be calculated using Equation 5.4, and P r is 
calculated using prelaunch lookup tables and Equation 5.5. 

5.1.5. Instrument Noise Power Estimation Using a 
Lookup Table 

It will be necessary to estimate the instrument noise power 
at every measurement due to LNA temperature fuctuations. 
This will be done using a lookup table derived from mea-
sured characteristics of the LNA gain and noise fgure as a 
function of temperature. Thermal testing of the LNA noise 
fgure performance as a function of temperature for all 27 
CYGNSS LNAs (1 zenith and 2 nadir per spacecraft) was 
performed over several thermal cycles to generate a best 
linear ft function, which is used to estimate the noise fgure 
as a function of temperature on orbit. 

The mean standard deviation of the noise fgure across 
the range of temperatures is 0.027 dB. The maximum slope 
is 0.0088 dB/°C, which when multiplied by the temperature 
uncertainty results in an estimated error in the instrument noise 
fgure of 0.018 dB due to temperature uncertainty. The total 
noise fgure error is taken as the RSS of the standard deviation of 
the measurements and the temperature error, which is 0.032 dB. 

The temperature of the LNA is read at 1 Hz, and the 
value of the instrument noise fgure is retrieved from a lookup 
table (LUT) generated from prelaunch testing. The LUT is 
then updated on orbit using instrument noise foor estimates 
performed at suffcient intervals to track slow changes in the 
LNA performance. The instrument noise fgure from the LUT 
is related to the instrument noise power using Equation 5.5. 

5.1.6. Updating Instrument LUTs On-Orbit 

The strategy for updating the prelaunch NF versus tempera-
ture LUTs has changed from the initial L1A ATBD. During its 
frst year on orbit, it was not possible to identify Earth surface 
areas that produced consistent and predictable noise levels 
from which a stable open ocean noise value could be reli-
ably obtained. This is believed to be due largely to the fact 
that the CYGNSS science antennas are both canted toward 
the spacecraft along track and have a relatively large main 
lobe with signifcant gain. This large feld of view to both the 
port and starboard sides of the spacecraft enabled surface 
noise from very large areas over the Earth’s surface to enter 
the main antenna beams. This made it very diffcult to isolate 
even the most remote regions of open ocean and obtain a 
reliable open ocean noise reference. 

Therefore, an alternative method is being designed for 
the monitoring and updating of the NF calibration tables 



  

 

  
 

 

      

         
 

 

 

 

 

 

 

 

 

 

 
 

 
  

 
 

 
 
 
  

 

 
 
 

 

  

 
 

 

 
 
 

 

 
 

 

 
 

 

5. Instrument Calibration and Error Analysis 37 

on orbit. Fortunately, the CYGNSS LNAs are proving to be 
remarkably stable, even after more than 1 year on orbit. A 
number of techniques using the full set of existing on-orbit 
data are being used to quantify the changing instrument 
noise fgure as the instrument ages on orbit. 

5.2. Routine Calibration of Signal Power 
The generic instrument DDM in counts is expressed in Equa-
tion 5.1, which includes the received signal power, P g . These 
DDMs will be generated by the instrument every second and 
will be corrected by the estimated noise foor expressed in 
Equation 5.2 and calculated using noise-only bins in the 
DDM such that we are left with a signal-only DDM: 

C ˜ °C C ˜GP . (5.7)g N g 

Subsequently, the instrument gain at the collection 
time of the DDM can be calculated using the current esti-
mate of  the LNA physical temperature, TI, from which we 
estimate the instrument noise power, P r. This is achieved by 
rearranging Equation 5.7 into an expression of the instrument 
gain and setting this equal to the instrument gain expression 
obtained from the black body load calibration DDM from 
Equation 5.6, 

˜ N CBC C
G ° ° , (5.8)

P P ˛Pg B r 

where 

• CB is the best estimate mean counts of the black 
body load DDM at the time of the measurement 
being calibrated. The black body load counts are 
linearly interpolated to the second of the measure-
ment using black body DDMs before and after the 
DDM being calibrated. 

• PB is the estimated black body load noise power 
estimated using the last LNA instrument thermistor 
temperature reading $T_I$ near the load itself in the 
LNA and Equation 5.4, taken within a second of the 
DDM being calibrated. 

• P r is the estimate of the instrument noise power, 
estimated from the noise fgure versus physical 
temperature (TI) lookup table generated prelaunch 
for this specifc LNA. 

5.2.1. Generating the L1A Data Product 

The routine calibration assumes that the gain G, antenna 
noise temperature T a, and instrument noise power P r 

remain constant over the combined collection interval for 
Equation 5.1 (DDM to be calibrated) and Equation 5.2 
(noise foor estimate for the DDM being calibrated). The 
black body noise counts used in Equation 5.6 are lin-
early interpolated from black body DDMs before and 
after the calibration DDM to the measurement time. By 
substituting Equation 5.8 into Equation 5.7 and solving 
for the signal power term, P g, we arrive at the fnal L1A 
calibration: 

(C C  P˜ )(  ° P ) N B rP ˛ (5.9)g CB . 
Equation 5.9 is applied to all pixels of the compressed 

Level 0 (L0) DDMs (11 Doppler bins × 17 delay bins) 
four times per second for each instrument measurement 
channel. 

5.2.2. Digital to Analog DDM Scaling Issue 

In the original CYGNSS L1A calibration algorithm, the entire 
L1A DDM was scaled from digitally sampled DDM values 
to the equivalent analog sampled power based on the 2-bit 
analog to digital sample distribution. This correction was 
based on well-known methods in radio astronomy for deal-
ing with fnite digital sampling of analog signals. However, 
examination of closely geolocated tracks between differ-
ent observatories at very close time intervals revealed an 
observed bias between measurements over nearly identical 
conditions. Figure 5.2 (top) shows one such case, where 
Flight Model (FM) 6 and FM 8 pass over nearly the same 
surface within 5 minutes of each other, yet a clear differ-
ence in the normalized bistatic radar cross section (NBRCS) 
values can be observed over the length of the track. Upon 
subsequent investigation, an issue in the analog to digital 
scaling being applied was found in which the calculated 
correction between digital and analog measurements was 
incorrect and introduced signifcant statistical biases between 
observatories. 

Upon removal of the existing digital to analog scaling, 
the overall intersatellite bias statistics improved signifcantly. 
Figure 5.2 (bottom) shows the same two tracks after the 
scaling has been removed, with good agreement across 
the entire track. 

The exact problem with the digital to analog scaling is 
being investigated and has not yet been identifed. However, 
as a signifcant reduction in intersatellite measurement bias 
was demonstrated with the removal of the digital to analog 
scaling factor, it was incorporated into v2.1 of the publically 
released data. 
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Figure 5.2. Top: Intersatellite bias between tracks of FM 6 and FM 8 on August 23, 2018, less than 5 minutes apart. Bottom: After digital 
to analog scaling is removed, NBRCS values agree much better across the same ocean track. 
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5.2.3. Consideration of Time and Temperature 
Dependencies 

All the terms in Equation 5.9 are collected at slightly differ-
ent times than the actual science measurements themselves, 
and during these time intervals, it is possible that the noise 
temperatures can vary slightly from the measurement time. 
Each of the terms in the L1A calibration equation is addressed 
below with regard to this time difference: 

1. C = The science measurement is made once per sec-
ond per channel and provides the reference time for 
all the other parameters. 

2. CG =  The noise measurements for each science 
DDM are made at delays above the ocean surface, 
which are only on the order of a handful of microsec-
onds from the time of the science measurement. 

3. PB = The blackbody target power is determined from 
a physical temperature sensor measured at 1 Hz and 
near enough in time to the 1 Hz science measurements 
that the physical temperature will not have changed 
signifcantly between the thermistor reading and the 
science measurement. 

4. P r =  The receiver noise power is derived from a 
prelaunch-generated LUT and will be subject to 
change over the mission lifetime due to instrument 
aging effects. This will be corrected by periodi-
cally updating the calibration LUTs over the duration 
of the mission as described above. It is expected that 
the aging effects will occur on a very slow time scale, 
on the order of several months. 

5. CB = The black body target measurement is made 
within 30 seconds of the science measurement and 
linearly interpolated to the measurement time using 
black body measurements before and after the DDM 
being calibrated. Any changes in the instrument tem-
perature over up to 30 seconds should be adequately 
mitigated by this interpolation. 

The LUTs used to estimate P r will be periodically updated 
on orbit. The dependence of P r on temperature has been 
initially characterized in prelaunch environmental testing, 
and the baseline fight lookup table was derived from those 
test data. As monthly data are analyzed, the lookup tables 
for each LNA on each satellite will be updated on orbit as 
required. 

5.3. Level 1B Calibration Approach 
This document is the second part of the overall L1 Calibration 
Algorithm Theoretical Basis Document (ATBD) describing the 
Level 1B (L1B) calibration. Portions of this ATBD have been 
republished in Gleason et al. (2019). 

The L1B calibration is performed after the L1A calibration 
and uses external metadata to convert the L1A mapped 
power in watts to a delay-Doppler map (DDM) of NBRCS 
values. This conversion is done for every pixel in every DDM 
and requires the following information at the time the science 
DDM is collected: 

1. The CYGNSS satellite GPS time, position, and velocity 
in the WGS-84 Earth-centered, Earth-fxed (ECEF) 
reference frame 

2. The GPS satellite position and velocity in the WGS-84 
ECEF reference frame 

3. Detailed knowledge of the CYGNSS nadir antenna 
gain patterns 

4. Best estimated attitude knowledge of the CYGNSS 
spacecraft at the time of the measurement 

5. An estimate of the GPS effective isotropically radiated 
power (EIRP) in the direction of the specular refection 
point in the GPS satellite reference frame 

Additional information calculated using the per-DDM 
science metadata and used in the L1B calibration of each 
DDM includes the following: 

1. An accurate surface geolocation of the refection 
specular point (SP) in the WGS-84 ECEF reference 
frame 

2. A precise estimate of the specular refection point 
location in the measurement DDM pixel delay and 
Doppler bins 

3. The path length between the GPS satellite and specu-
lar refection point and between the specular refec-
tion point and the CYGNSS spacecraft making the 
measurement 

4. The effective scattering area per DDM bin surrounding 
the specular point over all delay and Doppler bins 

The above parameters are then used to estimate values 
of the bistatic radar cross section for each DDM pixel using 
the forward model described below. 
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5.4. Forward Model of Scattered Signal 
Power 
A full expression for the GPS scattered signal power has been 
previously derived and published in 2000 by Zavorotny and 
Voronovich, shown in Equation 5.17. The original representa-
tion has been slightly modifed in form and variable names: 

T 0 R 
g PT˛2 Gx y, ° x y, Gx y, 2 2P ˙ ˆ S dxdy, (5.17)
f ˇˇ ; ,˜̂ ,̂  3 R 2 T 2 ˜̂ ; ,x y  f̂ x y (4 )˝ (R ) (R )x y, x y,A 

where Pg is the coherently processed scattered signal power 
˜̂ ,̂f 

Tin watts. PT is the GPS satellite transmit power and Gx y,  is the 
RGPS satellite antenna gain. Gx y,  is the CYGNSS satellite 

receiver antenna gain. RT  and RR  are the transmitter to x y, x y, 

surface and surface to receiver ranges, respectively. ˜ 0 isx ,y 

the NBRCS. Λ is the GPS signal carrier wavelength (approx. 
19 cm). °˜̂ ; ,x y is the GPS signal spreading function in delay, 
and S

;̂ ,
 is the frequency response of the GPS signal. A is

f x y 
the surface integration area covering the effective region of 
diffuse scattering for each delay-Doppler bin. The scattered 
signal power is processed using 1 ms coherent integration 
intervals over a range of relative delays τ and Doppler 
frequencies f, followed by 1 second of noncoherent averag-
ing. These delay and frequency bins map nonuniquely and 
spatially to physical coordinates on the surface. 

The above expression can be simplifed using the effective 
values of several variables across delay and Doppler bins 
under the integrand of Equation 5.1. The effective values include 
the effects of delay and Doppler spreading functions, Λ and 
S, which have been eliminated from the equation and are 
indicated by the overbar in the following equations. The surface 
mapping from physical (x,y) coordinates to delay and Doppler 
coordinates refects the actual processing as performed in the 
CYGNSS delay-Doppler mapping instrument (DDMI), 

T 2 T 0 R 
ˆ ˆ ˆ ˆP ° G ˙˛ ˆ G A 

g ˜̂ ,f ˜̂ ,f ˜̂ ,f ˜̂ ,fP ˇ , (5.18)
˜ ,f 3 R 2 T 2ˆˆ 

(4 ) (˝ R ˆ) (R ˆ)˜̂ ,f ˜̂ ,f 

where GR = the effective receiver antenna gain at each ˜̂ ,̂f 
T Rdelay-Doppler bin. R  and R  are the effective range losses ˜̂ ,̂f ˜̂ ,̂f 

at each delay-Doppler bin, and A  is the effective surface ˜̂ ,̂f 
scattering area at each delay-Doppler bin. All variables 
in Equation 5.18 vary with respect to delay and Doppler 
(which map to the x,y surface grid over the glistening zone); 
however, for the sake of simplifcation and with negligible 
loss in accuracy, several parameters can be estimated and 
applied as constants across the DDM measurement as 
expressed below. 

5.5. Geolocation of Measurement: 
Solving for the Surface Specular 
Refection Point 
The estimated location of the center of the surface glisten-
ing zone of the refected signal provides the main point of 
reference for the geolocation of the global navigation satel-
lite system refectometry (GNSS-R) measurement. This point 
on the surface is referred to as the specular point and can 
be estimated mathematically using the physical geometry 
of the transmitting and receiving satellites and a model of 
the Earth’s ocean surface. It should be noted that the sur-
face specular point estimation algorithm described below 
is designed for ocean surfaces. Land specular points over 
varying topography present unique challenges and will con-
tain additional geolocation errors not yet accounted for in 
the current CYGNSS L1 calibration. 

In the original L1 calibration approach, the specular 
point was solved using (a) the position of the receiving 
satellite as estimated by the 1 Hz single frequency position 
estimate, (b) the estimate of the transmitting satellite using 
ground-based precise ephemeris, and (c) the WGS-84 
ellipsoid model of the Earth. This Earth model, although 
generally accurate enough for most applications, relied on 
approximations that resulted in residual specular point posi-
tion estimation errors that were large enough to signifcantly 
impact the pixels in the DDM used to calculate the bistatic 
radar cross section. Subsequently, an improved specular 
point solver was implemented that used a more accurate 
DTU10 mean sea surface model (Andersen, 2010) com-
bined with a brute force, computationally effcient specular 
point solver algorithm. 

The specular point on the Earth maps to a single point 
in the delay-Doppler coordinates in the CYGNSS DDM. 
The exact specular point location in the DDM will be at a 
fractional pixel within a single DDM bin. The pixels in the 
DDM at and surrounding the specular point bin determine 
the region used to make the surface bistatic radar cross sec-
tion measurement, the DDM area (DDMA). The estimation 
of the DDMA within the L1A DDM is described in more 
detail below using the precise location of the specular point 
described here. This region of the DDM represents the bins of 
highest refected power and smallest spatial footprint on the 
surface, and accurate knowledge of these regions is critical 
for calibration and wind speed retrievals. 

The specular point location on the surface cannot be 
reliably estimated using the peak power bin of the DDM. 
The peak power pixel results from a combination of effects 
in addition to the specular point location, including thermal 

https://dxdy,(5.17
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noise, speckle noise, or asymmetries in the refected signal 
waveform (as a result of geometry and antenna pattern 
nonuniformity). For this reason, the specular point surface 
location and location of the specular point in the instrument-
generated DDM are calculated to a subpixel level from frst 
principles (i.e., geometry and timing metadata). 

5.5.1. Mean Sea Surface Height Model 

In order to more precisely predict the specular location, it 
is necessary to account for deviations in the Earth’s mean 
sea surface height as compared to the WGS-84 model. 
For this purpose, we have utilized the DTU10 mean sea sur-
face model (Andersen, 2010). The mean sea surface is the 
displacement of the sea surface relative to a mathematical 
model of the Earth, and it closely follows the Earth’s geoid. 
The amplitude of the deviation from the WGS-84 ellipsoid 
is generally within approximately ± 100 m over the Earth’s 
ocean surfaces. The original DTU10 data were reduced 
to a 1° by 1° resolution to improve the effciency of the 
calculation, which is reasonable due to the fact that height 
variations are relatively small. The DTU10 map of sea surface 
height variations relative to the WGS-84 ellipsoid used in 
the specular point solver is shown in Figure 5.3. 

The path delay error manifests itself as an error in the 
predicted refection path delay, which, in turn, becomes 
an error in the predicted location of the specular bin 

in the DDM. The error in predicted path delay can be 
expressed as 

˜ ˝ 2cos( )° ˛h, (5.19) 

where ρ is the path delay error, θ is the refection incidence 
angle, and Δ is the relative surface height error with respect 
to the WGS-84 ellipsoid. The height difference manifests as 
a path delay error, which becomes an error in the predicted 
location of the specular bin in the DDM. For a typical inci-
dence angle of 30°, a surface height error of 100 m could 
result in 170 m of path delay error. In the CYGNSS DDM, the 
delay pixel resolution is approximately 0.25 GPS L1 coarse 
acquistion (C/A) code chips, and one chip corresponds 
to approximately 293 m of delay. Therefore, a 170 m path 
delay error results in the predicted specular bin in the DDM 
being offset by 2.25 pixels from where we would expect it 
on the WGS-84 ellipsoid. 

Figure 5.4 shows a plot of specular bin delay difference 
when using DTU10 as opposed to using WGS-84. Specular 
delay differences are shown for 1 day of measurements for 
four satellites (each shown in four separate colors). We can 
observe that the delay difference (or correction) due to the 
improved specular point solver varies between –2 and 2.5 
pixels in delay space in the DDM. Figure 5.4 also shows an 
example measured CYGNSS DDM. In the DDM, the origi-
nal specular bin solved using WGS-84 model is shown as 

Figure 5.3. DTU10 mean sea surface data used for specular point calculation. 

https://2cos()��h,(5.19
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Figure 5.4. One day of specular point corrections using the DTU10 model as compared to the WGS- 84 model. The correction due to the 
improved specular point solver varies between – 2 and 2.5 pixels in delay space in the DDM. 

a red X, while the new specular bin solved using DTU10 is 
shown with a red square. Visually, it is clear the specular bin 
location calculated with DTU10 is at the correct location in 
the refected waveform. Range errors introduced by incorrect 
specular point prediction primarily impact the L1 calibration 
due to misidentifying the correct specular point bins (and 
specular region refected power) in the DDM measurements. 
These errors will also degrade the surface vertical ranging 
accuracy and horizontal geolocation if not corrected. 

5.5.2. Specular Point Solver Implementation 

The new specular point solution is reported in the  CYGNSS 
L1 data in the form of the specular point position and velocity 
variables. It takes approximately 20 seconds to calculate 
one day of precise specular points within CYGNSS DDMs 
from one satellite (approximately 320,000 DDMs). The new 
algorithm used to solve for the specular point is as follows: 

1. The original specular point solution based on the 
WGS- 84 ellipsoid model is used as our initial esti-
mate of the specular point. 

2. A large 3D grid of points is constructed around the 
estimated specular point. This grid has uniform latitude 
and longitude spacing and is conformal to the WGS-
84 ellipsoid at each point. 

3. At each grid point, the DTU10 mean sea surface height 
is used to shift the altitude. The 1° resolution DTU10 
data is bilinearly interpolated to fnd the altitude value 
at each grid point. The resulting grid is then conformal 
to the DTU10 surface. 

4. Next, the point in the grid with the minimum refection 
path length (from transmitter to the grid point to the 
receiver) is found. This minimum- path- delay grid point 
becomes the new specular point location estimate. 

5. An additional higher resolution grid is constructed 
around this estimated specular point location, and 
Steps 2– 4 are repeated several times. In this way, 
a series of search grids sequentially zooms in on the 
estimated specular point. The initial grid size and 
resolution are carefully chosen to prevent erroneous 
convergence. 

The specular point we solve for here is defned as the 
point on the Earth with the minimum refection path delay. 
As the surface we use is conformal to an arbitrary geoid 
topology at each grid point, no mathematical constraint is 
placed on transmitter and receiver incidence angles in this 
solution. In a strict sense, it is no longer a “specular” point, 
since (if the ocean surface were smooth) a specular refection 
would occur at surface locations with equal transmitter and 
receiver incidence angles, not minimum delay. Nonetheless, 



  

  

 

 
 

 

 
 
 

 
 

  
 

  

 

  
  

  
 
 

  

 

 
 

 

  

 

  

  

 
 
 

 

5. Instrument Calibration and Error Analysis 43 

the minimum delay point is suffciently relevant for our pur-
poses, since the corresponding specular bin defnes the lead-
ing edge of the refected waveform and the specular point 
represents the center of our iso-delay surface contours within 
the refection glistening zone. 

The DTU10 mean surface height model contains data over 
both ocean and land. The updated specular point estimates 
are valid and accurate over ocean only, as the DTU10 eleva-
tion model does not consider variations in land topography. 
An additional surface height map will be implemented in 
future versions of the L1 calibration, which includes land 
surface height variations. 

The updated specular point solution is differenced with 
the instrument estimated specular point solution to produce 
a correction term in the DDM’s delay and Doppler space. 
This correction is applied to the original prediction of the 
specular bin location in the DDM during the estimation of 
the DDMA measurement area. 

5.6. L1B Calibration Algorithm: Watts to σ0 

The L1A calibrated DDM represents the received surface 
signal power in watts binned over a range of time delays and 
Doppler frequencies. Before any geophysical parameters 
can be estimated, these power values must be corrected for 
non–surface related terms by inverting the forward model 
shown in Equation 5.18. The CYGNSS L1B calibration gener-
ates three data products associated with each L1A DDM: 
(1) a bin-by-bin calculation of the surface bistatic scatter-
ing cross section, σ (not normalized by scattering area); 
(2) bin-by-bin values of the effective scattering areas; and 
(3) an NBRCS value for a DDMA in a 3 delay × 5 Dop-
pler bin region around the estimated specular point location 
in the DDM. The frst two products will allow users to nor-
malize values of σ to values of σ0 (scattering cross section 
per meter squared) over confgurable surface extents using 
summations of the effective scattering areas for individual 
DDM bins. The values of σ are corrected for the effects of 
the transmit and receive antennas, range losses, and other 
non–surface related parameters. The effective scattering 
areas are calculated based on the measurement-specifc 
refection geometry and include the GPS-specifc delay and 
Doppler spreading functions. However, care should be taken 
when using DDM bins away from the specular point, as some 
of the corrections applied (such as the receive antenna gain 
and path losses) will degrade at pixels outside the DDMA 
area. An overview of the CYGNSS L1B calibration is shown 
in Figure 5.5. 

5.6.1. Expression for Bistatic Radar Cross Section 

The fnal expression for the L1B DDM can be derived from 
the expression of the signal forward model, expressed in 
Equation 5.18, by solving for the scattering cross section 
term, σ0. As the DDM L1B σ product will not be normalized, 
we have removed A from Equation 5.18 and replaced the 
normalized radar cross section σ0 with the nonnormalized 

Rσ. Additionally, receive antenna gain GSP, the GPS antenna 
Tgain GSP, and total path loss (simplifed into a single value) 

Total terms are approximated with their values at the specu-RSP 

lar point and applied across the whole DDM. The resulting 
expression for the bin-by-bin scattering cross section, σ, is 

Pg (4° )3 

L b1 ˜̂ ,̂fP ˆ ˙ˆ ̨  ˆ ˇ˙ , (5.20)˜ ,f ˜ ,f T 2 T R Total ˆ ˆ P ˝ G G RSP SP SP 

where the individual terms in Equation 5.20 are as follows: 

1. PL b1  is the L1A calibrated signal power at a specifc ˜̂ ,̂f 
delay and Doppler bin. 

Total2.  is the total range loss from the transmitter to the RSP 

surface and the surface to the receiver at the specu-
lar point. When using a relatively small area of the 
DDM near the specular refection point, this value 
can be approximated as the total range from the 

Figure 5.5. Overview of CYGNSS L1B calibration. 
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transmitter to the specular point to the receiver. This 
term is included in the denominator, as it is calculated 

1 1Totalas a loss R ˜ .
R 2 T 2( ) ( )R R 

T3. PT and GSP are the GPS satellite transmit power and 
antenna gain at the specular point. These values are 
estimated using a ground-based GPS power moni-
tor and measurements from the CYGNSS navigation 
antenna to map the transmit power of individual GPS 
satellites. Details can be found in Wang et al. (2018b). 

R4. GSP is the receiver antenna gain at the specular point 
applied across all DDM bins. The SP antenna gain 
outside the DDMA region will introduce errors that 
should be accounted for when using pixels outside the 
DDMA region (3 delay and 5 Doppler around SP). 

5.6.2. CYGNSS Bin Ratio Correction 
5.6.2.1. CYGNSS Analog to Digital Convertor 
(ADC) Design 
A full explanation of the CYGNSS analog to digital sampling 
confguration and calibration corrections can be found in 
Gleason et al. (2021). 

The CYGNSS instrument input signal processing chain 
includes the following steps: After capturing the off-air signal 
by the receive antenna, the signal enters the low noise ampli-
fer (LNA) and is processed through a cavity flter and initial 
fxed voltage gain stage. Following this initial amplifcation 
stage, the received signal travels to the instrument front end, 
where additional down-conversion and fltering are applied. 
This includes added amplifcation by a commandable voltage 
gain, which permits adjustment of the analog signal level into the 
ADC. It is noted that numerous GPS receivers confgure the front 
end into an automatic gain control (AGC) mode in order to 
autonomously adjust this variable gain stage, thereby securing 
an ideal normal sampling distribution. However, the need for 
knowledge of the precise input power level for a science obser-
vation prohibits this convenience on the CYGNSS instruments 
and necessitates that the commandable gain stage remain 
at a constant commanded value for the CYGNSS receivers. 

The need to manually command the front-end gain set-
tings adds the requirement that the input signal levels be 
compatible with the 2-bit ADC digital sampling thresholds 
(which are fxed within the front end). When the gain is set too 
high (increased magnitude of real analog voltage samples), 
the sampled input signal falls disproportionally into the outer 
sampled bins, which results in a nonideal inverted sampling. 

Alternatively, if the commanded gain is too low, the sam-
pling shifts to the (lower voltage) inner two bins of the 2-bit 

sampling and results in a peaked sampling distribution. The 
optimal confguration is when the gain is commanded to a 
level that results in a near-ideal normal (Gaussian) sampling 
distribution over the four digital sampled bins. 

As the sampling distribution deviates from the Normal 
(Gaussian) shape, a small and gradual degradation in the 
downstream processed retrieved signal power levels arises 
(Ulaby & Long, 2014). It is important to note that GNSS 
signals, when sampled off-air, are typically at levels well 
below the input noise foor and are subsequently detected 
using a coherent (spread spectrum) processing technique in 
the digital signal processor such that the sampling distribution 
in a GNSS receiver is driven mostly by the input noise level 
(Misra & Enge, 2001). 

It is convenient to defne a single metric to quantify the 
digital sampling distribution. We have chosen to do this in 
a parameter called the bin ratio (BR), which is defned as 

b2 ̃  b3
BR ° ˛, (5.21)

1˜b b4 

where b1, b2, b3, and b4 are the number of counts accu-
mulated into each of the four digital sampling bins, –3, –1, 
+1, and +3, respectively, over a short time interval that in 
the case of the CYGNSS receivers is 1 second. 

5.6.2.2. Impact of On-Orbit Bin Ratio Fluctua-
tions on L1B Calibration 
To demonstrate the impact of a fuctuating bin ratio on the 
primary CYGNSS L1 (NBRCS) and Level 2 (L2; wind speed) 
products, a 1-year-long CYGNSS data record was ana-
lyzed across all observatories for both port and starboard 
science channels. 

Figure 5.5 illustrates the positive correlation of NBRCS 
and bin ratio (BR) over a full year of CYGNSS data (2019). 
Bin ratio estimates over this yearlong data record are com-
puted using Equation 5.21, and the NBRCS is the mean value 
across all CYGNSS observatories within narrow (0.05 width) 
bins. The surface mean square slope (MSS) and wind speed 
reference data are based on temporal and spatial match-
ups from ECMWF ocean surface wind speed (in 0.25 m/s 
bins). The estimated uncertainty in the European Centre for 
Medium-Range Weather Forecasts (ECMWF) winds has 
been estimated to be on the order of 0.5 m/s root mean 
squared error (RMSE; Bechtold et al., 2012/13). Addition-
ally, the WAVEWATCH III (WW3) wave mean square slope 
model (WW3DG, 2016) has been used as a surface refer-
ence. To account for the CYGNSS observation frequency, an 
L-band adjusted spectral tail (Wang et al., 2019) has been 
applied to the WW3 outputs and the surface isolated over 
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narrow MSS conditions (in 0.0005 width bins). The accuracy 
of this L-band spectral tail corrected model MSS is unknown 
and the subject of ongoing research. Yet these data provide 
a more direct surface link to the CYGNSS L-band observa-
tions than the near surface wind speeds and are included 
as a secondary comparison source. 

In the idealized scenario of no calibration errors or 
uncertainties, NBRCS estimates should be independent of 
all instrument quantities with no correlation to bin ratios. 
Figure 5.6 shows the relationship between NBRCS and 

bin ratio for a wide range of ocean MSS (left) and wind 
speeds (right). Ideally, there would be no correlation 
between NBRCS and bin ratio, and the colored curves 
in Figure 5.6 would be fat. As they are not, a correction 
is required to avoid sampling errors in the retrieved MSS 
and wind speeds. 

5.6.2.3. Nadir Bin Ratio Correction 
The input noise power is the dominant component of the 
precorrelated GPS signal received at the instrument analog 

Figure 5.6. Mean NBRCS estimates versus science channel bin ratio for a wide range of ocean conditions without digital sampling cor-
rection: left, over a range of surface MSS conditions (ref. WW3); right, over a range of wind conditions (ref. ECMWF). 
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to digital converter (ADC). Thus, a correction to the observed 
noise foor can be performed to mitigate received power 
uncertainty due to BR fuctuations driven largely by external 
noise variations. The correction is designed as an adjust-
ment to the per- observation estimated  CYGNSS L0 noise 
counts. The received signal power counts in the  CYGNSS L1 
calibration are estimated after subtraction of the estimated 
noise foor; that is the difference of the total counts and noise 
counts. As a result, by correcting the noise counts, we are 
directly adjusting the downstream estimated L1 power levels, 
including the NBRCS estimate. 

The noise foor correction was derived using a theoreti-
cal simulation of the  CYGNSS hardware confguration as 
detailed in Gleason et al. (2021). Upon application of the 
theoretical correction, it was observed that the results could 
be improved slightly by adding a modest multiplicative scal-
ing factor to the theoretical correction. The fnal nadir channel 
noise foor corrections applied to the  CYGNSS L1 data are 
the empirical correction curve shown in Figure 5.7. The noise 
foor correction versus BR is stored in a LUT and applied to 
every  CYGNSS L1 observation based on the BR calculated 
in Equation 5.1 and the empirical correction LUT as shown 
in Figure 5.7. 

The postcorrection NBRCS versus BR performance is 
shown in Figure 5.8 across ranges of MSS and wind speed 
bins. A summary of the results of this analysis is included in 
Table 5.1. These statistics are generated using all  CYGNSS 
data from 2019 with temporal and spatial colocations data 
from ECMWF (U10 wind speed) and WAVEWATCH III 
(L- band corrected MSS) used as the validation reference 
dataset. 

Figure 5.7. Theoretical and empirically adjusted digital sampling 
noise foor corrections applied to  CYGNSS v3.1 L0 noise levels. 

5.6.2.4. Zenith Bin Ratio Correction 
The  CYGNSS zenith observations consist of integrated signal 
plus noise counts only, without a reference noise foor. This 
prohibits the application of the nadir noise foor correction 
to the zenith channel observations. Therefore, the observed 
zenith signal plus noise counts need to be corrected directly 
before a real- time EIRP estimate is formed (Wang et al., 
2021). Note that a decrease in the noise foor in the nadir 
calibration is equivalent to an opposite adjustment to the 
total signal plus noise counts. 

Like the nadir digital sampling correction, the zenith cor-
rection can also be optimized using empirical tuning factor(s) 
to ensure consistency of the EIRP estimation as a function of 
natural bin ratio fuctuations. Due largely to the spread of 
zenith bin ratio probability density functions (PDFs) with 

Table 5.1. Summary of  CYGNSS Precorrection and Postcorrection NBRCS Root Mean Square Deviations Across Wind 
Speed (Ref. ECMWF) and MSS (Ref. WW3) Surface Conditions 

Surface conditions NBRCS RMSD NBRCS slope NBRCS RMSD NBRCS slope 
(linear) (|∆NBRCS/∆BR|) (linear) (|∆NBRCS/∆BR|) 

Uncorrected Corrected 

Wind total (5– 20 m/s) 12.90 9.34 2.79 1.48 

Low winds (5– 7 m/s) 19.50 13.91 4.19 2.24 

Medium winds (7– 12 m/s) 13.75 9.90 1.60 0.38 

High winds (12– 20 m/s) 10.64 7.80 11.3 1.93 

MSS total (0.020– 0.025) 12.86 9.30 1.89 0.84 

Low MSS (0.020– 0.025) 15.04 10.80 2.06 0.99 

Medium MSS (0.025– 0.030) 12.59 9.09 1.35 0.26 

High MSS (0.030– 0.035) 10.93 7.99 2.19 1.19 

RMSD, root mean squared difference 
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Figure 5.8. NBRCS estimates versus science channel bin ratio over a range of ocean conditions with noise foor correction: left, with 
respect to surface MSS conditions (ref. WW3); right, over a range of near surface wind conditions (ref. ECMWF). 
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means under that associated with an ideal Gaussian distri- the correction “weights” at a given bin ratio is evident. An 
bution, applying a single correction across all zenith obser- example of this is CYG04, which requires a much larger 
vations was not possible, and individual per-observatory 
corrections are required. 

The per-FM zenith digital correction functions are 
shown in Figure 5.8. To better illustrate the need for an 
increased empirical correction factor as the mean BR of the 
distributions decreases, the per-FM corrections are shown 
only between their 5% and 95% bin ratio limits to better 
illustrate the correction values where the on-orbit observa-
tions occur for each CYGNSS FM. As a given zenith bin 
ratio distribution approaches that of an ideal Gaussian dis-
tribution, only modest empirical adjustments are needed. 
For example, see the CYG05 correction in Figure 5.9. 
In contrast, as the bin ratio distribution diverges from this 
ideal reference PDF, a need for signifcantly increasing 

empirical scale factor. 
The zenith signal digital corrections are evaluated with 

respect to the consistency of EIRP estimation across BR by 
each CYGNSS FM. An example of the before and after 
correction EIRP estimation across BR for CYGNSS FM 3 is 
shown in Figure 5.10. Before the digital sampling correction is 
applied, there is a clear positive linear trend in the EIRP over 
a large range of BR (the bin ratio limits over which 95% of 
data occurs for a given FM). After the correction is applied, 
the EIRP estimation is signifcantly more consistent (i.e., fatter) 
over the same BR range, reducing the maximum EIRP slopes 
by ~92%. The precorrection and postcorrection estimated 
EIRP root mean square difference (RMSD) presented on a 
per-FM basis are listed in Table 5.2. 

Figure 5.9. CYGNSS FM specifc zenith digital correction functions. Reference nadir correction is fipped around the 1.0 axis to accom-
modate the opposite signal plus noise counts correction. Scale factors are derived and applied to each FM individually. Corrections are 
shown for each FM over the 5%–95% range of observations where they are applied. This clearly demonstrates the deviation from the 
reference correction as the BR distribution shifts downward. 

Table 5.2. Summary of CYGNSS Zenith Channel Bin Ratio Distributions and EIRP Precorrection and Postcorrection 
Performance 

Parameter FM 1 FM 2 FM 3 FM 4 FM 5 FM 6 FM 7 FM 8 

Empirical scale factor, Y(FM) 3.15 4.25 1.35 5.50 0.93 4.40 2.40 3.45 

Zenith BR mean 1.17 0.99 1.64 1.01 1.64 1.35 1.25 1.16 

EIRP RMSD, uncorrected 97.113 123.88 96.76 101.19 72.69 130.30 101.17 102.85 

EIRP RMSD, corrected 23.91 28.99 20.91 16.18 22.83 23.40 24.21 19.57 
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Figure 5.10. Example zenith mean EIRP estimation over the BR range containing 95% of zenith observations for CYGNSS FM 5. The precor-
rection estimates (dotted line) clearly show a positive trend with BR that is largely mitigated with the digital sampling correction (solid line). 

Figure 5.11 Physical scattering area for a typical DDM refection geometry. The delays before the specular refection point do not cor-
respond to any physical region on the surface. 

5.6.3. Calculating Effective and Physical 
Scattering Areas 

A single delay-Doppler bin will contain the captured scat-
tered power across one or more physical regions on the 
ocean surface. For each delay-Doppler bin in the DDM, 
this region will vary in both actual physical size (on the 
ground surface area) and effective area (combined with 
the GPS spreading functions). The GPS ambiguity func-
tions (in both delay and Doppler) increase the effective 
area of each delay-Doppler bin, causing power to be 

“spread” into adjacent delay and Doppler bins from outside 
the geometry-determined physical scattering area. These 
functions change the levels of overall processed power 
observed. The physical area of each DDM bin can be 
calculated as follows: 

A dxdy. (5.22)
˜̂ ,̂f 
° ˛˛ 

A 

An example of the physical scattering area for a typical 
DDM is shown in Figure 5.11. Note that points up to and 
before the specular point bin (i.e., at delays shorter than 

https://dxdy.(5.22
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the specular refection point delay) have no physical sur-
face scattering area. The power received in the bins before 
the specular point is due to power being spread into these 
bins by the GPS ambiguity functions from physical areas 
near the specular point. The effective surface scattering area 
for each delay-Doppler bin is expressed as the ambiguity 
function weighted surface integration, 

A ° S dxdy, (5.23)
˜̂ ,̂f ˝˝˛˜ 2

;̂ ,x y  f̂ 
2
;x y, 

A 

where the delay spreading function, °˜̂ ; ,x y, and the Doppler 
spreading function, S

;̂ ,
, are integrated over the physical 

f x y 
surface corresponding to each individual delay-Doppler 
bin. Figure 5.12 shows the effective scattering area DDM 
corresponding to the physical scattering areas illustrated 
in Figure 5.11. 

Initial analysis has shown that when only using a relatively 
small area of the DDM (corresponding to approximately a 
25 km2 area on the surface), it is suffcient to approximate the 
receive antenna gain, range loss terms, and the GPS transmit 
antenna power and gain using constant values calculated 
at the specular refection point. 

5.6.3.1. Rescaling from End-to-End Simulator 
Using the CYGNSS End-to-End simulator, estimates of the 
physical scattering areas and, subsequently, the effective 
scattering areas under varying observation geometries 
are derived and used to generate a reference Atot LUT 
for use in the normalization of DDMA radar cross section 

estimates. An example of this is shown in Figure  5.13, 
where surface delay-Doppler solutions are developed on 
a high-resolution (50 m) grid and subsequently used to 
identify surface grid pixels corresponding to a given delay 
τ – Doppler f pair. 

It is noted that the determination of the relevant areas is 
limited to resolutions of ~0.25 chips and ~500 Hz to match 
the delay °˜  Doppler ˜f  resolutions of the L1 DDM. The 
original scattering area estimates were based on a for-
ward binning scheme where the physical scattering area 
at delay τ and Doppler f composes the footprint spanning 
∈ [τ + °˜ , f + ̃ f]. It follows that the maximum delay-Doppler 
binning errors associated with the estimation of the physical 
area are comparable to °˜  and ˜f , respectively. 

An example of how this may compromise normalized 
radar cross section estimates σ0 is shown in Figure 5.14, 
where the forward binning scheme appears to lead to an 
overestimation of scattering areas, which in turn reduces 
CYGNSS NBRCS estimates relative to reference model 
NBRCS estimates. 

The revised DDMA normalization area estimates used 
as part of CYGNSS’s v3.1 data release are derived using 
the same procedures while substituting the forward binning 
scheme with a central binning scheme such that the physi-
cal scattering area at delay τ and Doppler f composes 
the footprint spanning ∈ [˜ / 2˝ ˙˜ ˆ ˛° ˛  ˜ / 2 ,˜ ˜ 
f ˜ ˝ / 2° ° ˛ ˝f ̃ ˜f f f / 2], thereby limiting maximum delay-
Doppler sampling errors to °˜ / 2˜and δ ̃ f / 2 ,̃ respectively. 

Figure 5.12. Effective scattering area corresponding to the physical scattering area shown in Figure 5.11. This DDM of the effective scatter-
ing area is a key output product of the L1B calibration, which allows users to calculate normalized values of σ0. 

https://dxdy,(5.23
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Figure 5.13. Example of surface grid used to develop physical scattering area DDMs. Iso-delay (chips) lines are in black; iso-Doppler 
(Hz) lines are in magenta. For illustrative purposes, the physical area using a forward binning scheme corresponding to A(τ = 0.25 chips, 
f = 500 Hz) is in red, A(τ = 1 chips, f = 1000 Hz) is in green, and A(τ = 2.25 chips, f = 1500 Hz) is in blue. 

Figure 5.14. NBRCS PDFs summarizing the effects of revised DDMA normalization area estimates. 
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An example of the physical area solutions using the revised 
binning scheme is shown in Figure 5.15. 

It is estimated that the forward binning scheme was 
associated with a ~22% average overestimation of DDMA 
normalization areas such that a reduction of Atot signifcantly 
improved the correspondence of CYGNSS’s NBRCS esti-
mates to reference NBRCS estimates (see Figure 5.14). 

As a result of the switch from forward binning to central 
binning, the effective area normalization of the DDMA was 
reduced by 22.36% using a constant scale factor applied to 
all v3.1 DDMA effective area lookup-table entries. 

5.6.4. On-Orbit Estimation and Correction of 
Receive Antenna Pattern Errors 

As a standard L1 data product, CYGNSS data include 
DDMs over 11 Doppler bins and 17 delay bin pixels around 
the specular point. The NBRCS °˜  is calculated as per

,̂̂f 
Equation 5.4 for each delay-Doppler bin. 

Prior to launch, antenna pattern measurements were 
made for all the port and starboard antennas. In addition, 
the predicted effects of the spacecraft body were extensively 

modeled using pattern simulation tools to attempt to accu-
rately predict the fnal antenna patterns when attached to the 
spacecraft. These simulations included mechanical computer-
aided design (CAD) models of the physical spacecraft with 
electromagnetic feld simulations using the Altair Feko FEKO 
and Savant software packages. Additionally, full pattern 
measurements of the port and starboard antennas were 
made while mounted to a CYGNSS engineering model 
(EM) in an anechoic chamber. From the modeling effort, 
which was confrmed by the EM chamber measurements, 
we know that the solar panels have a signifcant impact on 
the observatory antenna gain patterns. 

The individual modeled pattern measurements were 
adjusted using a constant gain factor based on measured 
differences between the fight antennas to create the at-
launch gain patterns for each CYGNSS Flight Model (FM) 
antenna calibration table. 

However, we know that there is potentially signifcant 
variability in the exact deployed positions of the solar panels 
from repeated prelaunch panel deployment tests. It there-
fore stands to reason that applying a simple constant off-
set for each of the FM antennas from the modeling and EM 

Figure 5.15. Example of surface grid used to develop physical scattering area DDMs. Iso-delay (chips) lines are in black; iso-Doppler (Hz) 
lines are in magenta. For illustrative purposes, the physical area using a central binning scheme corresponding to A(τ = 0.25 chips, f = 500 Hz) 
is in red, A(τ = 1 chips, f = 1000 Hz) is in green, and A(τ = 2.25 chips, f = 1500 Hz) is in blue. 
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measurements is overly simplistic. It was evident from the initial 
analysis of the CYGNSS on-orbit data that an improved 
estimate of the CYGNSS antenna patterns was needed for 
each antenna in the constellation. 

5.6.4.1. Estimation of Receive Antenna Gain 
Error 
Analysis of the initial CYGNSS data, released in May 
2017, shows a signifcant dependence of observed σ0 on 
the azimuthal observation angle of the specular point with 
respect to the CYGNSS spacecraft. While the NBRCS val-
ues are expected to depend on wind and incidence angle, 
the dependence on azimuthal angle was expected to be 
negligible. These anomalies were quantifed in terms of a 
normalized NBRCS anomaly ˜0,anom, expressed as 

(̃  ° ˛˜ ˝)0 0˜ ˙ . (5.24)0,anom ˛˜0 ˝ 

σ0 is expected to vary as a function of wind speed and 
geometry, so σ0 anomalies are computed as the difference 
between each calibrated σ0 from the mean value for all 
σ0 within 2 m per second wind speed and 2° incidence 
angle bins. Reference wind speeds are from colocated 
ECMWF reanalysis felds to within 90 minutes and 25 km 
of the corresponding CYGNSS observations. To determine 
the dependence of these anomalies on azimuth angle, 
average anomalies were computed in 1° azimuth bins. 
The results using the original calibration algorithm between 
day of year 77 and 121 are shown in Figure 5.16. Results 
are averaged across all eight CYGNSS satellites for the 
starboard and port antennas. For this and future analysis 
shown, the average of the σ0 in the DDM is computed 
using the estimates σ0 over the DDMA region near specu-
lar point DDM bins. It is important to note that due to the 
cross track ground projection of the receive antenna pat-
terns and onboard track selection algorithm, most of the 
measurements are distributed within 30° in azimuth angle 
around 90° (for the starboard) and 270° (for the port) 
measurement orientations. 

The key variables in the L1B calibration are the transmit 
power PT, the transmit antenna gain GT, the receiver antenna 
gain GR, and geometric factors, including the range cor-
rection. Additionally, the effective scattering area used to 
normalize σ also contributes to the overall level of σ0. Of 
these, only the antenna gain patterns GT and GR depend 
directly on azimuthal angle. The transmit antenna gain GT 

will vary from observation to observation, but not in a manner 
highly correlated with specular point azimuth with respect 
to the CYGNSS spacecraft. Therefore, it was hypothesized 

that the likely candidate for the observed azimuthal variation 
was the receiver antenna gain GR. 

5.6.4.2. Improved CYGNSS Antenna Patterns 
To develop updated antenna patterns, an independent esti-
mate of expected σ0 was computed from a model-based 
MSS from the Wave Watch III model (WW3DG, 2016) with 
an L-band wave spectrum extension model (Wang et al., 
2019). This was then used with a relationship between MSS 
and σ0 described in Chapter 6 and given in Equation 6.1. 
The ratio of this model-based σ0 to the observed σ0, matched 
in 1° latitude/longitude and 30 minutes time, is then used 
to compute an update to the receive antenna gain in antenna 
azimuth and elevation coordinates. For each fight antenna in 
the constellation (1 port and 1 starboard antenna for each 
of 8 spacecraft = 16 total antennas), σ0 updates were com-
puted in 1° increments of spacecraft off-nadir and azimuth 

Figure 5.16. Left: σ0 anomalies computed for L1 data between 
day of year 77 and 121 of 2017 on the Version 1 using prelaunch 
estimated receive antenna patterns. Right: σ0 anomalies comput-
ed for L1 corrected data for Version 2 of the L1 calibration. The 
anomalies reduce the worst-case error of 40% to less than 10%. 
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angle. These antenna correction maps were then smoothed 
over 5° windows in azimuth and off- nadir angle in order to 
reduce measurement noise. 

These results were then interpolated using nearest neigh-
bor interpolation to a resolution of 0.1°. This map of σ0 obs/ 
model ratios as a function of antenna coordinates was used 
to scale the original patterns to produce a new estimate of 
the receive pattern gain, which greatly reduced the observed 
azimuthal anomalies (anomaly subtracted from original 
antenna pattern in logarithmic space from estimates of gain 
in dB). This was done for all 16 operational fight antennas 
on all 8 observatories. 

An example of the resulting σ0 ratio and the resulting 
updated gain maps is shown in Figure 5.17 for the FM 1 
starboard antenna. Results for the other 15 antennas are 
similar. The anomalies, which were initially greater than 40%, 
are reduced to less than 20% residual anomalies across 
all azimuth angles. The regions near the azimuth angles 
where most measurements are taken (90° and 270° for 
starboard and port, respectively) have errors reduced to 
10% or less. The remaining errors are most likely due to vari-
ability within the data not related to wind speed, incidence 
angle, or receiver antenna pattern effect accounted for in 
this analysis. 

Figure 5.17. Left: Antenna pattern change (obs/model σ0) for FM 1 starboard antenna pattern. Right: FM 1 starboard antenna pattern 
with corrections applied to produce the improved pattern. 
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It should also be noted that off-nadir angle is highly cor-
related to incidence angle for a given spacecraft orientation, 
with the relationship directly tied to the spacecraft roll, which 
changes periodically as the spacecraft are adjusted to main-
tain a power positive orientation for high solar beta angles. 

5.6.5. Calculating a Normalized Bistatic Radar 
Cross Section 

The L1B bin-by-bin DDM of σ0 and the bin-by-bin DDM 
of effective scattering areas can be combined to calculate 
a normalized radar cross section value, σ0, over selected 
regions of the measurement DDM called the DDMA. The 
CYGNSS L2 wind retrieval products use the DDMA to 

generate geophysical model functions (GMFs) to estimate 
near surface winds. The DDMA consists of three delay bins 
and fve Doppler bins, with the specular point located 
in the frst row (shortest delay) of this region. Figure 5.18 
shows this DDMA region in red, overlapped with the nor-
mal instrument processed DDM delay and Doppler pixels 
in black. The true (best) estimate of the DDMA region 
(as calculated by the precise specular point estimation 
method described above) is marked as a red dot in this 
fgure, while the white dot is the L1B DDM that the “true” 
specular point falls into. 

These precise DDMA bins will not normally align exactly 
with the L1B DDM bins generated by the instrument (due 

Figure 5.18. Bins used in computing DDMA quantities. Left: L1B DDM of σ values, numbered to correspond to the same pixels with DDMA 
overlaid and bin numbers referenced to Equation 5.9. The red group of DDMA bins is the overlay of the 3 by 5 DDMA measurement 
area with the processed L0 DDM pixels, containing a typical misalignment. The best estimate DDMA is based on a refned specular point 
estimate and represents the true measurement error. Right: Detail of the overlap areas of a single DDMA bin (the specular point bin) and 
adjacent L1B bins. 
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to errors in the instrument’s open loop signal tracker), mak-
ing a simple summation over 15 total bins in the L1B DDM 
problematic. The “true” DDMA radar cross section is the 
weighted combination of L1B DDM bins around the best 
estimate surface specular point and fractional contributions 
from bins around the edge of the DDMA region. This set of 
overlapping DDM bins is, when weighted and summed, 
the best estimate of the “true” multibin DDMA total radar 
scattering cross section σ0. The misalignment between the 
measured L1B DDM bins and the “true” DDMA bins is illus-
trated in Figure 5.10. The DDMA specular point is offset by 
fractional bin amounts in delay and Doppler from the L1B 
measurement DDM shown in the fgure. 

In order to calculate the total radar cross section in 
the red DDMA area, the actual measurement L1B values 
(one per white box/pixel) need to be combined using a 
weighting scheme that includes only a fractional amount of 
power from bins around the edges of the DDMA bins. The 
fractional weighting scheme used is approximated to be lin-
ear in both the delay and Doppler dimensions. Figure 5.18 
shows the regions of overlap for a single red DDMA bin 
with respect to the surrounding measurement bin values. 
The total DDMA radar cross section can be calculated as 
per Equation 5.25, resulting in a combined expression for 
the DDMA σ0, 

° W N M ° , ˝ ˝  ,weighted i j  i ̨ 1 j ̨ 1 ˜ i jf0° ˛ ˛ , (5.25)
A N M Atotal i ̨ 1 j 1̨ ˜ i j,f˝ ˝  

where N and M represent the delay and Doppler bin in the 
L1B DDM, respectively (with N = 4 and M = 6, a single bin 
more than the DDMA size in both dimensions): 

˜ ˛ ˝° ˝ ˙˜ ˆ ˝° ˜)( ˆ˜ ˆ˜(1 )(1  ) (1 ˆ˜ )weighted 1 2 3 4 5 

ˆ ˝  ˙  (1  ((1 ° ˜) ˆ  ˝ ˙)(̃  ˆ˜ )ˆ ˙ ˜ ˆ˜ )6 7 13 12 18 

ˆ° (1˝ ˙)̃  ˆ° (̃ ˆ˜ ˆ˜ ˆ˜ ) ° ˜ˆ ˙ 19 20 21 22 23 24 

ˆ(̃ ˆ˜ ˆ˜ ˆ˜ ) ̂ (̃  ˆ˜ ˆ˜ ˆ˜ )8 9 10 11 14 15 16 17 . 
(5.26) 

Each bin in the L1B DDM contributing to the weighted 
σ  is scaled by a weighting factor W  based on the weighted i,j 

overlap with the respective “true” DDMA bin. σ  is then weighted 

normalized by the sum of the effective area DDMA bins 
(which are centered at the ideal specular refection point 
and require no weighting correction) to arrive at the fnal σ0 

measurement over the “true” DDMA region. The summations 
and weighting involved in calculating σ  for the example weighted 

above are expressed in Equation 5.25, where the delay and 

Doppler index values are simplifed to single bin numbers as 
illustrated in Figure 5.9, and terms with the same weighting 
factor are combined. 

5.6.6. Altitude-Dependent DDMA Area 
Normalization 

The CYGNSS satellites were launched into slightly ellipti-
cal orbits, causing altitude fuctuations between perigee 
and apogee of up to approximately 35 km. This was not 
taken into account in the V2.0 calibration algorithm, where 
a circular orbit at a constant altitude was assumed during 
the generation of the initial LUTs used to perform the scat-
tering area normalization of the DDMA to arrive at NBRCS 
estimates of σ0. This has been corrected in Version 2.1 with 
an updated normalization area LUT, which accounts for the 
changing altitude of the CYGNSS spacecraft. 

After the calculation of the weighted DDMA σ total as 
described above, σ , the bistatic scattering cross sectionweighted 

is normalized as shown in Equation 5.24. In Version 2.0 of 
the calibration, this was performed with a lookup table, which 
was a function of incidence angle and elevation angle only 
at a constant altitude. This ignored the effects of the changing 
satellite altitudes and introduced (relatively) small errors (up 
to 0.1 dB) into the σ0 estimation used in subsequent wind 
speed and MSS retrievals. In Version 2.1, a new LUT has 
been generated with an additional altitude dimension. This 
will allow the area normalization to correct for changes in 
the scattering area due to their slight eccentricity as well as 
longer time scale orbit changes. An example subset of the 
new DDMA normalization areas (reduced to better reveal 
the changing LUT area magnitudes) is shown in Figure 5.19 
as a function of incidence and altitude (at a constant azimuth 
angle). Testing of the new altitude-dependent LUT has been 
validated to signifcantly reduce correlation of σ0 with the 
satellite altitude. 

5.6.7. Correction for Dependence of Calibration 
Error on Receiver Noise Floor 

The v2.0 L1B calibration algorithm produces two mea-
surement observables, DDMA and leading edge slope 
(LES), which are subsequently used by the L2 algorithm to 
retrieve wind speed. The correction described here is added 
to the v2.1 L1B calibration algorithm. It applies a small addi-
tive offset to each observable. The correction minimizes 
mean differences between the measured observable and 
simulated values of the observable obtained by applying 
the geophysical model function to coincident wind speeds 
modeled by ECMWF. The correction is a linear function 
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Figure 5.19. Version 2.1 DDMA LUT values for altitudes between 500 and 550 km (covering the full range of the CYGNSS orbits, with margin 
on the low side) and incidence angles between 0° and 30°. The increases in DDMA area with incidence angle and altitude are both clearly 
observable in the new LUTs. These data were generated at a constant 90° azimuth angle. Color scale is in km2 for the entire DDMA region. 

of the noise foor of the DDM from which the observable 
is computed. The slope and y-intercept of the linear func-
tion are themselves functions of the FM number, the range 
corrected gain (RCG), and the angle of incidence (θinc) 
associated with each DDM. The correction applied to each 
L1 observable has the form 

˛ ( ,  ˜ NF ˛ ( ,  ˜ inc Obs  ° Obs m FM RCG, )  b FM RCG, )corr inc , 
(5.27) 

where 

1. Obs  is the corrected L1 observable corr 

2. Obs is the v2.0 L1 observable, either the DDMA (σ0) 
or the LES 

3. m(FM,RCG,θinc) is the slope of the linear regression, 
which is a tabulated function of FM, RCG, and θinc 

4. NF is the noise foor of the DDM (designated as ddm 
noise foor in the L1 data fles) 

5. b(FM,RCG,θinc) is the y-intercept of the linear regression, 
which is a tabulated function of FM, RCG, and θinc 

5.6.8. Characterization of GPS EIRP 

The GPS transmit power, PT, and transmit antenna gain, 
GT, or the EIRP can be estimated using a combination of 
ground-based measurements and a parametrized model 
as a function of the transmitter space vehicle number (SVN) 
for all GPS satellites. 

5.6.8.1. Transmit Power Estimation 
A ground-based GPS constellation power monitor (GCPM) 
system has been designed, built, calibrated, and operated to 
measure the direct GPS L1 C/A signal (Wang et al., 2018b). 
The calibration subsystem and low noise amplifer (LNA) are 
implemented on a proportional–integral–derivative (PID)-
controlled thermal plate with extremely stable temperature 
control. 

The measured GPS received power has been found to 
be highly repeatable as tested for different satellites of three 
different block types. The measured EIRPs are verifed by 
Deutsches Zentrum für Luft- und Raumfahrt (DLR) German 
Operations Center (GSOC) independent measurements 
using a calibrated 30 m dish antenna with 50 dB L-band 
gain. 

An optimization algorithm is used to estimate the transmit 
power of GPS L1 C/A code by minimizing a cost function 
based on the difference between an engineering forward 
model prediction and the measurement of received power. 
We determine our best estimate of the GPS transmit power 
for the L1 C/A signal by averaging 32 days of estimates of 
PT, as given in Table 5.3. More technical details of the GCPM 
system and the optimization algorithm can be found in Wang 
et al. (2018b). The following should be noted: 

1. The estimated power values are indeed an “effective 
transmit power” as the product of the exact transmit power 
and the transmit system gain correction factor (GCF). 
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Table 5.3. Estimates of GPS Transmit Power (L1 C/A) 

Pseudorandom noise code (PRN) P  (dBW) T Block PRN P  (dBW) T Block 

1 15.09 IIF 17 16.39 IIR-M 

2 13.79 IIR 18 14.04 IIR 

3 14.77 IIF 19 13.66 IIR 

4 — — 20 13.48 IIR 

5 16.28 IIR 21 14.43 IIR 

6 15.38 IIF 22 14.39 IIR 

7 16.86 IIR 23 15.41 IIR 

8 15.42 IIF 24 15.03 IIF 

9 15.49 IIF 25 15.32 IIF 

10 16.28 IIF 26 15.22 IIF 

11 13.67 IIR 27 15.34 IIF 

12 16.88 IIR 28 14.27 IIR 

13 13.89 IIR 29 16.84 IIR-M 

14 13.20 IIR 30 15.47 IIF 

15 16.08 IIR 31 16.35 IIR-M 

16 13.93 IIR 32 15.87 IIF 

2. The accuracy of the estimated power values is 
dependent on the accuracy of the baseline pattern 
(5th-order power series of transmit antenna gain in 
Marquis & Reigh, 2015) used in the forward model 
simulation. 

5.6.8.2. Transmit Antenna Gain Estimation 
The transmit antenna directivity of IIR and IIR-M block type 
SVs has been published in Marquis and Reigh (2015), 
while that of IIF block type SVs is unavailable to the public. 
The baseline antenna pattern (Wang et al., 2017) used in the 
L1 calibration is a 5th-order power series (polynomial ftting) 
of the azimuthally averaged published antenna pattern for 
IIR and IIR block types and that of the averaged pattern of 
all 12 SVs using improved antenna panel (4 IIR and 8 IIR-M) 
for IIF block. 

5.6.8.3. Discussion of GPS Transmitter EIRP 
Characterization 

1. Transmit power and antenna pattern: The high-
resolution full transmit antenna pattern will be retrieved 
using the direct GPS signal measured by the CYGNSS 
zenith antenna, as discussed in Wang et al. (2018a). 
Then the transmit power table will be further updated 
when the full patterns are applied to the optimization 
algorithm. 

2. IIF block type power switching issue: 10 of the 12 IIF 
SVs switch the power sharing between the components 
in L1 over the US East Coast and back over the West 
Pacifc in every orbit. It has been a stable behavior 
since the frst quarter of 2017. Currently, the data 
measured by the IIF block are fagged. This issue will 
be resolved by incorporating the CYGNSS zenith 
antenna measurement in L1 calibration. 

3. SV retirement for PRN 18: On March  5, 2018, 
space vehicle number (SVN) 54 (operating as 
PRN 18) retired. SVN 34 (Block IIA) has been used 
for PRN 18 since March 20, 2018. CYGNSS data using 
PRN 18 since then are fagged. 

4. Power redistribution for block IIR-M: A commanded 
redistribution of transmit power from M code to C/A 
code was performed for the 7 active IIR-M satellites on 
February 7 and February 8, 2017 (Steigenberger et al., 
2017). The measured carrier-to-noise (C/N0) density 
ratio from different geodetic receivers experienced 
an approximately 1.5 dB-Hz increase on average. 
This phenomenon indicates an increase in the L1 C/A 
code power for all 7 satellites after the maintenance 
was performed (Thoelert et al., 2017). This event hap-
pened before the CYGNSS satellites were transitioned 
to science mode. No additional power redistribution 
for IIR-M satellites has been reported since then. 
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5.7. L1 Trackwise Correction for Climate 
Data Records 
Determination of the NBRCS of a scattering surface from 
CYGNSS measurements of received power requires that 
the EIRP of the L1 signal transmitted by the GPS satellite 
in the direction of the specular refection point be known 
(Gleason et al., 2016). EIRP is the product of the GPS trans-
mit power and transmit antenna gain in the direction of the 
specular refection point. Since NBRCS is used to estimate 
ocean surface wind speed (Clarizia & Ruf, 2016), retrieval 
of wind speed also requires knowledge of the EIRP. The L1 
calibration algorithm converts raw received power into cali-
brated NBRCS. The L1 algorithm uses GPS transmit antenna 
gain patterns provided by the GPS manufacturers. The power 
transmitted by each GPS satellite was initially determined 
from measurements made by an accurately calibrated 
ground-based GPS power monitor (Wang et al., 2018b). 
A single value for transmit power was determined for each 
GPS satellite from measurements made over many days. 
This implicitly assumes that the power transmitted by each 
GPS satellite does not vary over time. This approach is used 
for L1 Science Data Products Sensor Data Record (SDR) 
versions 1.0, 1.1, 2.0, and 2.1 and for the corresponding L2 
and L3 products derived from them. Analysis of GPS power 
monitor measurements since CYGNSS’s launch has shown 
that GPS transmit power variations have in fact occurred, 
sometimes suddenly for short periods of time and sometimes 
more gradually over long time periods. The L1 trackwise cor-
rection algorithm is intended to correct for those variations. 

The leading edge slope (LES) L1 data product is derived 
from calibrated measurements of the scattering cross section 
as the slope of the leading edge of the delay waveform at the 
specular point (Clarizia & Ruf, 2016). LES calibration similarly 
requires knowledge of the GPS EIRP, and the trackwise cor-
rection algorithm is also applied to it. 

CYGNSS data acquired prior to August 1, 2018, were 
measured with the fight GPS navigation receiver com-
manded to operate in automatic gain control (AGC) mode, 
which automatically adjusts receiver gain so the strength of 
direct (not scattered) signals received from the constellation 
of GPS satellites is restricted to a narrow dynamic range 
prior to signal processing. AGC mode is intended primarily 
to compensate for expected variations in received signal 
strength due to changes in the distance between transmitter 
and receiver and in a number of other characteristics of the 
signal propagation. It also inadvertently compensates for 
changes in the GPS transmit power. The AGC mode was 
disabled on all eight observatories in August 2018 in order 

to enable the use of the received direct signal strength to 
monitor the GPS transmit power level, determine the GPS 
EIRP, and use that information to better calibrate the L1 
NBRCS and LES. L1 and higher data products beginning 
with SDR version 3.0 use the new real-time GPS EIRP monitor-
ing capability to correct for its variations in the L1 calibration 
algorithm. The trackwise correction algorithm is intended to 
mitigate the effect of variations in GPS transmit power on the 
NBRCS and LES calibration for measurements made prior 
to August 2018. It is also applied to data taken after August 
2018 and serves to correct for other secondary inaccura-
cies in the calibration. The data products produced with it 
are considered Climate Data Records (CDRs) in the sense 
that they are reprocessed products that rely on the use of 
ancillary reanalysis wind speed products to improve the 
calibration and produce data products with reliable long-
term calibration stability. 

5.7.1. Trackwise Correction Methodology 

CYGNSS surface scattering measurements are made by frst 
identifying a GPS satellite for which the specular refection 
point on the surface between it and the CYGNSS satellite 
lies in the CYGNSS receive antenna pattern and then pro-
cessing the scattered signal received using matched flter 
correlation with the unique pseudorandom noise (PRN) code 
used to modulate the transmissions from each GPS satellite 
(Gleason & Gebre-Egziabher, 2009). The matched flter 
correlation includes a fnal incoherent integration time of 
1 second, and an output measurement is produced once 
every second that is proportional to the strength of the scat-
tered signal. This is the L0 CYGNSS data that are converted 
to NBRCS and LES. A CYGNSS “track” is defned as the 
continuous once-per-second measurements made while a 
single CYGNSS observatory processes scattered signals 
from a single GPS PRN. The length of the track is determined 
by the time over which its specular refection point stays within 
the CYGNSS receive antenna mainbeam. In practice, tracks 
last between 10s of seconds and > 1000 seconds, with an 
average length of ~650 seconds. Given the orbit velocities 
involved, this corresponds to an average track length of 
~3000 km. 

The trackwise correction algorithm acts, as its name 
implies, on individual tracks. All ocean samples in a track 
are used. Each sample is matched to an independent 
reanalysis model estimate of the ocean surface wind speed. 
The model wind speed is applied in reverse to the geophysi-
cal model functions that are normally used by CYGNSS to 
infer wind speed from measurements of NBRCS and LES (Ruf 
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& Balasubramaniam, 2019). In this case, NBRCS and LES 
are estimated from wind speed. For each track, this produces 
a population of observed and modeled values. A scale 
difference between them can be explained by a change in 
the transmit power of the GPS PRN that is responsible for the 
specular refection. An offset difference between them can 
be explained by a change in the noise foor of the received 
signal, which is sensitive to the sum of transmit powers of 
all visible GPS satellites. The trackwise correction algorithm 
consists of applying a linear regression to the two popula-
tions and applying its regression coeffcients to the CYGNSS 
observations. Deviations of the slope of the regression from 
unity can be related to deviations of the true GPS PRN trans-
mit power from the mean value used in the L1 calibration 
algorithm. In practice, this correction can also mitigate other 
scale errors in the L1 algorithm. Likewise, the y-intercept (off-
set) correction will mitigate multiple sources of change in the 
noise foor, in addition to changes in the transmit power of 
the overall GPS constellation. 

CDR L2 and 3 products (ocean surface wind speed, 
mean square slope, and latent and sensible heat fux) are 
generated from the CDR L1 data using the same L2 and L3 
data processing algorithms as are used for the standard 
SDR data products without the trackwise correction. The L2 
and L3 CDR products also exhibit improved calibration accu-
racy and stability over the SDR versions. 

5.7.2. Input Data Description 

A complete track of observations (NBRCSobs) is used for 
each trackwise correction. (A track is defned as a continu-
ous time series of samples using the same GPS PRN and 
CYGNSS observatory.) All samples in the track that are 
over ocean are matched up with the closest (in time and 
space) wind speed value provided by ERA5. Model values 
for the NBRCS (NBRCS ) and LES (LES ) are derivedmod mod 

from the ERA5 wind speed using the L2 wind speed retrieval 
algorithm GMFs that tabulate wind speed as a function of 
NBRCS, LES, and incidence angle. The samples are then 
fltered, and the subset satisfying the following conditions 
is selected: 

1. 1.5 m/s < ERA5 wind speed 
2. 0 < NBRCS  < GMF(1.5 m/s) or 0 < LES obs obs 

< GMF(1.5 m/s) 

Filter 1 is intended to remove samples with wind speeds 
below 1.5 m/s, for which the GMF is considered less reli-
able because the NBRCS and LES become more sensitive 

to long wave swell that is not as well correlated with local 
wind speed. Filter 2 is intended to remove samples that are 
either nonphysical (negative values) or above the GMF 
value that corresponds to a wind speed of 1.5 m/s. If less 
than 50 samples are available after these flters are applied, 
then the track is fatally fagged, and CDR wind speeds are 
not produced. 

5.7.3. Trackwise Correction Processing 

The fltered track of observed and modeled samples is 
ordered by the modeled values from minimum to maximum. 
The range of values is subdivided evenly into 10 bins, and 
for every bin with more than 1/20th of the total number of 
samples, the samples within the bin are averaged. A linear 
regression is performed of the average values in each bin, 
with observations as the independent variable. This version of 
linear regression is used to better balance the contributions 
of samples across the full dynamic range of values, since with 
most tracks, the distribution of wind speed samples is highly 
nonuniform and concentrated near 5–9 m/s. 

The linear regression coeffcients are then applied to the 
observation samples, resulting in preliminary trackwise cor-
rected values given by 

NBRCS = m*NBRCS + b (5.28a)obs2 obs 

LES = m*LES + b, (5.28b)obs2 obs 

where m and b are the regression coeffcients. 
Outlier samples are identifed by examining the difference 

between model and corrected values. Specifcally, a sample 
is considered an outlier if it satisfes 

|NBRCS —NBRCS | > 40 (5.29a)obs2 mod 

|LES —LES | > 20. (5.29b)obs2 mod 

All outliers are removed from the population of fltered 
samples, and the linear regression is repeated with the original 
fltered samples less the outliers. This is done to reduce the infu-
ence of outlier samples on the fnal trackwise correction. After 
the second iteration of the linear regression, Equation 5.28 
is then applied to all samples in the track, resulting in the fnal 
trackwise correction version of the observations given by 

NBRCS = m*NBRCS + b (5.30a)obs_cor obs 

LES = m*LES + b, (5.30b)obs_cor obs 
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where m and b are now the regression coeffcients from the 
second iteration of the linear regression. 

5.7.4. Quality Control Considerations 

The trackwise correction is assessed for reliability and 
confdence using several quality control metrics at L1. The 
outlier test described by Equation 5.32 is applied to all 
samples over ocean, for which modeled values of the L1 
observables are available, and all outliers are fagged. 
Samples over land cannot be tested in this way. The slope 
of the linear regression from which the trackwise correction 
is derived (m in Equation 5.30) is required to be above 
0 and below 3. Negative slopes indicate a nonphysical 
dependence of the L1 observable on wind speed. Slopes 
larger than 3 are an indication that the scale error in the 
observations cannot readily be explained by an error in 
the assumed GPS EIRP given its expected range of vari-
ability. The y-intercept of the linear regression (b in Equa-
tion 5.30) is required to be between –20 and +50 for the 
LES and between –40 and +100 for the NBRCS observ-
able. These ranges are consistent with expected levels of 
bias correction. The explained variance (i.e., the r2) of the 
linear regression is required to be greater than 0.02. This 
is an indication of nonnegative correlation between the 
measured and modeled observable. Violations of any of 
these conditions are fagged with low confdence in the 
linear regression–based correction, since the behavior of 
the correction is not consistent with expected behavior. In 
practice, all of these quality control tests combined together 
typically fag ~22% of the samples. 

L2 CDR wind speed estimates are derived from the L1 
CDR data using the same retrieval algorithm as is used for 
regular data production. Hence the same quality control 
flters are used. 

5.7.5. Output Data Product Description 

The trackwise corrected L1 observables, NBRCS  andobs_cor 

LES , are included in the CDR data fles as these dataobs_cor 

felds: 

ddm_nbrcs—the trackwise corrected variable NBRC-
S  given by Equation 5.30a obs_cor 

ddm_les—the trackwise corrected variable LESobs_cor 

given by Equation 5.30b 

In addition, a number of ancillary data felds are also 
output that are related to the trackwise correction. These 
include the following: 

*l1*_tw_outlier (*l1* = nbrcs or les)—a quality 
control bit signifying that a sample was identifed as 
an outlier according to the criteria given in Section 
5.7.2 above 

*l1*_tw_r2 (*l1* = nbrcs or les)—the correlation 
coeffcient of the linear regression used to determine 
the trackwise correction given by Equation 5.30 

*l1*_tw_slope (*l1* = nbrcs or les)—the slope of the 
linear regression used to determine the trackwise 
correction, m in Equation 5.30 

*l1*_tw_yint (*l1* = nbrcs or les)—the y-intercept of 
the linear regression used to determine the trackwise 
correction, b in Equation 5.30 

ddm_*l1*_orig (*l1* = nbrcs or les)—the value of the 
L1 observable prior to trackwise correction 

*l1*_mod (*l1* = nbrcs or les)—the model value of 
the L1 observable derived from the matchup ERA5 
wind speed and the GMF 

tw_num—the number of samples within a track that are 
included in the linear regression used to determine 
the trackwise correction given by Equation 5.30 

era5_wind_speed—the matchup ERA5 wind speed 
that corresponds to a particular sample 

5.8. CYGNSS End-to-End Simulator 
The CYGNSS end-to-end simulator (E2ES) is a software 
simulator of the CYGNSS mission. In support of prelaunch 
CYGNSS Science Team activities, the E2ES played an 
important role in demonstrating the ability of the baseline 
CYGNSS instrument to satisfy mission requirements—in par-
ticular, the accuracy of the retrieved winds for both typi-
cal ocean wind speeds and the extreme winds of tropical 
cyclones. Prelaunch simulations incorporating high-fdelity 
tropical cyclone input wind and rain felds were performed 
to provide a realistic, high-resolution, time-varying truth wind 
feld capturing all phases of the tropical cyclone life cycle 
and the associated highly nonuniform wind and rain felds 
with intensities that exceed those typically used by other 
simulators. Internally, the simulator models all critical steps 
of the DDM production process: dynamic orbit propagators 
for the GPS and CYGNSS constellations; signal propagation 
(including rain attenuation) to and from the specular refec-
tion point on the Earth’s surface; bistatic forward scattering 
from the wind-driven, roughened ocean surface; transmit and 
receive antenna gain patterns projected onto the Earth’s sur-
face; and fading and thermal noise statistics of the received 
signal. These steps culminate in the generation of DDM mea-
surements that simulate observations to be obtained on orbit. 
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5.8.1. CYGNSS E2ES Implementation 

The CYGNSS E2ES is organized into a set of fundamental 
blocks that are executed sequentially as depicted in Fig-
ure 5.20. The E2ES process starts with an initialization phase. 
A confguration fle is provided by the user and used to allo-
cate memory for data structures, load input fles, and set a 
number of user-defnable parameters. 

First, the transmitter and receiver orbit information is input 
by the user. Currently, the full CYGNSS and GPS constella-
tions are input in the form of time-varying positions and veloci-
ties in ECEF coordinates based on the predicted distribution 
of CYGNSS satellites and International GNSS Service 
(IGS) orbit fles for the GPS satellites. Using the WGS-
84 Earth ellipsoid model, the E2ES solves for the point on 
the Earth where the refection of the transmitted signal takes 
place (i.e., the specular point) using an effcient iterative 
approach until precise convergence is reached. The specu-
lar point is found for each receiver/transmitter combina-
tion for which a line of sight exists. Later in the process, a 

down-selection is applied to select the four specular points 
from each CYGNSS satellite with the highest receive antenna 
gain. 

Next, if the specular point is over the ocean, the surface 
around the specular location is discretized into a grid. The 
main contribution to the scattered signal power at the receiver 
comes from the specular point and a “glistening zone” 
around it. For typical CYGNSS measurements, it is suffcient 
to limit the grid around the specular point to a 200 × 200 km2 

region that is gridded into roughly 1 × 1 km patches. The 
curvature of the Earth is accounted for using a conformal 
grid around the specular location. The discretized surface is 
then composed of a dense grid of patches, each having its 
own geometry with respect to the transmitter and receiver. A 
depiction of the grid is shown in Figure 5.21. Once the grid 
is constructed, the geometric parameters of each patch are 
evaluated. These parameters include the range, delay, Dop-
pler shift, and scattering angle. The relative angle of each 
patch to the transmitter and receiver antennas is calculated, 

Figure 5.20. High-level fow diagram of the CYGNSS end-to-end simulator. 
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Figure  5.21. Depiction of the E2ES internal discretized surface 
grid around the specular point showing how each surface patch 
possesses a distinct geometry with respect to the receiver and 
transmitter satellites. 

and the transmit and receive antenna gains are found for 
each location on the surface. The surface grid resolution has 
been chosen so that these parameters can be considered 
uniform over each patch. 

At this point, the geophysical parameters of the surface are 
incorporated. These include the wind speed and direction, 
rain rate, and freezing level in the atmosphere (the last two 
are required to evaluate the rain attenuation). The original 
geophysical data are in the form of a time series at a native 
resolution that is then interpolated in both space and time to 
match the surface grid. For our tropical cyclone simulations, 
the input wind and rain feld data were high-resolution data-
sets sampled at 1 km. The wind felds are used to calculate 
the expected MSS of the ocean surface based on a modi-
fed Katzberg semiempirical model. This, in turn, is used to 
calculate the radar cross section of the surface patch and 
ultimately the total scattered power. 

The bistatic radar cross section (BRCS) of the sur-
face patch is calculated using the Zavorotny-Voronovich 
model. The expected value of GPS scattered power as a 
function of delay and Doppler is a product of the receive 
(CYGNSS) antenna gain pattern on the surface, the trans-
mit (GPS) antenna gain, the range from the specular point 
to the transmitter, the range from the specular point to the 
receiver,  the GPS transmit power, the coherent integration 
time, and the GPS L1 wavelength. Within the E2ES, the equa-
tions are implemented in discrete form—that is, the discretized 
surface data are mapped into a discretized delay-Doppler 
space and then convolved with the ambiguity function in 
order to produce the DDM. The grid sizes on the surface and 
DDM are chosen to be at a high enough resolution such that 
discretization errors are small. This produces the statistically 

expected value of the received DDM; however, the E2ES 
must also accurately incorporate the effects of fading and 
thermal noise in order to capture the correct error statistics 
for the wind speed retrieval. 

Note that the CYGNSS E2ES also models the effects of 
rain attenuation. The GPS L1 band has inherently low attenu-
ation due to rain, snow, and hail (as was the original intent 
when it was selected for satellite navigation). This is a key 
advantage of CYGNSS over other wind speed measurement 
instruments, especially when measuring within extreme rain 
conditions, such as hurricanes. Within the eyewall of tropical 
cyclones, small, short-lived cells can experience extreme 
rain rates that have a small but nonnegligible attenuation 
on refected GPS signals, and the CYGNSS E2ES has been 
designed to incorporate the two-way path-specifc attenu-
ation using the model in International Telecommunication 
Union (ITU) R838-3 given the rain rate and freezing level 
at the specular point. 

5.8.2. CYGNSS E2ES DDM Generation 

In the CYGNSS DDMI, each DDM pixel is obtained through 
a cross correlation of the received scattered GPS signal 
with a locally generated replica of the C/A code of the 
transmitted signal for the delay-Doppler (DD) coordinate 
corresponding to that pixel. In preparation for downlink to 
the ground, the onboard CYGNSS DDMs consist of 17 × 11 
pixels, extending from –1 chip to 3 chips in delay and from 
–2.5 kHz to 2.5 kHz in Doppler, with a resolution of 0.25 
chip and 500 Hz. This DDM is very compact in delay-
Doppler space, and the E2ES was designed to effciently 
simulate this size DDM (as opposed to other potential imple-
mentations that would more effciently capture waveforms, 
which are much longer in delay). 

Given the expected scattered power of each surface 
patch as described in the previous section, the E2ES can 
produce simulated CYGNSS observations containing both 
speckle and thermal noise effects. The direct DDM synthesis 
mode in the E2ES produces complex DDMs that represent the 
output of a 1 ms coherent integration. The process is repeated 
1,000 times as the geometry (and associated phase to indi-
vidual surface patches) evolves, and after adding thermal 
noise, the resulting powers incoherently average to produce 
a single 1-second DDM product. The refected GPS signal is 
formed by contributions from a large number of independent 
surface scatterers. This random scattering generates multiplica-
tive self-noise (i.e., fading or speckle noise), which is propor-
tional to the signal. In the E2ES, the scattered feld of each 
discretized surface patch is initialized as a complex random 
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variable with a fxed magnitude and uniformly distributed 
random initial phase. The evolution of this phase depends 
on the changes in geometry as the receiver and transmitter 
satellites move in time relative to each patch. This results in 
random fading noise in the refected signal and realistically 
represents the correct statistical properties to be observed in 
space-based GNSS- R measurements. The scattered feld 
from the patches is then mapped into delay- Doppler space to 
form a DDM. Note that time evolution of the sea surface itself 
is not considered, as it has been shown that the fading statistics 
of spaceborne GNSS- R measurements are dominated by 
changes in geometry due to the high velocities associated 
with satellite platforms. The internal “fnely resolved” DDM is 
then down sampled to match the delay and Doppler resolu-
tion of the actual  CYGNSS measurements. 

5.8.3. Use of E2ES in CYGNSS L1B Calibration 

Prior to launch, the  CYGNSS E2ES was used to generate 
test sets of DDMs with which to evaluate the L1A and 1B 
calibration algorithms. The calibration algorithms themselves 
utilize the  CYGNSS E2ES in two ways. First, the  CYGNSS 
L1B calibration utilizes precise specular point solutions based 
on algorithms frst developed for the E2ES. The specular point 
solver utilizes a gridded surface conformal to the DTU10 
mean sea surface topology at each grid point. The specular 
point we solve for here is defned as the point on the Earth 
with the minimum refection path delay and is solved for 
using an iterative approach accurate to centimeters. No 
mathematical assumptions are used. 

Second, the  CYGNSS E2ES is used as part of the con-
version of DDM BRCS values into an NBRCS. The E2ES is 
used to calculate the effective scattering area of different 
DDM pixels for different geometries. The effective scattering 
areas per pixel are tabulated, and these values are retrieved 
during the calibration process based on the measurement- 
specifc refection geometry and include the GPS- specifc 
delay and Doppler spreading functions. Normalization of 
the BRCS for the scattering area is a key step in the inversion 
of the forward model so that geophysical parameters can 
be estimated from the NBRCS values. 

5.9. Quality Control Flags 
The L1 data product will include a set of quality control fags. 
Each of the quality control fags is briefy described below.

 1. Overall Quality Flag. Logical OR of a subset of the 
fags listed below. Flags OR’d together include 4, 5, 

(a) 

(b) 

(c) 

Figure 5.22. Comparison of (a)  CYGNSS L1 DDM measurements, 
(b) CYGNSS E2ES simulated DDM measurements, and (c) the re-
spective residual for two different cases (left and right columns). 

6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 

25, 26, 27, and 28.

 2. S- Band Transmitter Power On. Set when the spacecraft 

S-band transmitter is powered on, which increases 

the possibility of radio frequency interference (RFI) 

in the measurements.

 3. Small Spacecraft Attitude Error. Set when spacecraft 

attitude is between 1° and up to 30° off nominal 

pointing in any axis.

 4. Large Spacecraft Attitude Error. Set when spacecraft 

attitude is equal to or greater than 30° off nominal 

pointing in any axis. 

5. Black Body Load Switched. Set if black body calibra-

tion load was switched in during this measurement.

 6. DDMI Reconf guration. Set before and after black 

body calibration load switched to indicate the given 

DDM is a mixture of antenna and calibration load 
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signals and should not be used. Also set when pro-
cessed PRN changes during integration interval. 

7. Communications Error Between Instrument and Space-
craft. Set when Cyclic Redundancy Check (CRC) error 
detected in packet communications between instru-
ment and spacecraft for this DDM. 

8. DDM Is a Test Pattern. Set when DDMI is in a test 
mode, producing test patterns. 

9. DDMI Channel Idle. Set if the DDMI was not actively 
tracking a satellite PRN when this measurement was taken. 

10. Low Confdence in DDM Noise Floor. Set if more 
than a 10% change in noise foor levels is observed 
between consecutive DDMs. 

over land. 
12. Specular Point Very Near Land. Set when specular 

point is within 25 km of land. 
13. Specular Point Near Land. Set when specular point 

is within 50 km of land. 
14. Large Step in Noise Floor. Set if more than a 0.24 dB 

jump in noise foor levels is observed between con-
secutive DDMs. 

15. Large Step in LNA Temperature. Set if more than a 
1°C change in temperature over 1 minute is observed 
in the LNA temperature. 

16. Direct Signal in DDM. Set if the direct signal code 
phase from the same PRN as the refection is within 4 
chips of the estimated specular point code phase. 

17. Low Confdence in GPS EIRP Estimate. Set when the 
ground estimate of the transmitting GPS satellite power 
and antenna gain is believed to be signifcantly in error. 

18. RFI Detected. Set when the kurtosis of the DDM noise 
foor varies more than the ideal Gaussian (3.0) by 
more than 1.0. 

19. Specular Point Bin Delay Error. Set if specular point, 
zero-based delay bin is less than 6 or more than 10. 

20. Specular Point Bin Doppler. Set if specular point, zero-
based Doppler bin is less than 4 or more than 6. 

21. Negative Value in BRCS Area. Set if any bin in the 
3 × 5 DDMA measurement area in the DDM is 
negative. 

22. GPS PVT Error. Set if the position, velocity, and time 
information for the GPS satellite was not successfully 
calculated on the ground. 

23. Specular Point Calculation Error. Set if specular point 
was not able to be calculated on the ground. 

24. Specular Point Bin Delay Error. Set if specular point, 
zero-based delay bin is less than 6 or more than 10. 

 Set when specular point is Specular Point Over Land. .11 

25. BRCS LUT Error. Set if index into BRCS error LUT is out 
of range. 

26. Antenna Gain LUT Error. Set if index into antenna LUT 
is out of range. 

27. Black Body Framing Error. Set if unable to calculate 
black body calibration load counts. 

28. Flight Software Compression Shift Error. This fag is 
triggered by a known (and fxed) bug in the fight 
software. This primarily occurs in low signal-to-noise 
ratio (SNR) conditions or in cases of high asymmetry in 
the DDM (also typical in low-SNR DDMs). For DDMs 
where SNR ≥ 3, receive antenna gain ≥ 3, measure-
ment > 25 km from land and star tracker status is valid, 
this fag is set for approximately 0.35% of data. 

5.10. CYGNSS L1 Error Estimation Method 
This analysis assumes that the uncertainties in the CYGNSS 
L1 calibration algorithm are generally independent, uncor-
related error sources, which can be characterized with a 
zero mean Gaussian distribution. This may not be strictly the 
case for some terms (most notably the GPS transmit power 
levels), yet to a frst order, this analysis serves to bound 
the expected error and, as shown in the top-down analy-
sis in Ruf et al. (2018), is consistent with the best estimate 
of the overall on-orbit observed CYGNSS wind retrieval 
performance. The method for this error analysis is based 
on the partial derivative method presented in Jansen et al. 
(1995). Additionally, the rolled-up error was simulated using 
a Monte Carlo simulation and was in agreement with the 
partial derivative estimated error levels presented below. 
For more details on the partial derivatives for individual 
error terms in the L1A and L1B calibration equations, refer 
to Gleason et al. (2016). 

5.10.1. Error Analysis Methodology 

The total error in the L1A or L1B calibrated DDM is the root 
sum square (RSS) of the individual error sources in the inde-
pendent terms of their respective expressions, which can be 
expressed generically as 

1/2 x 
a b, 2˝L ˜ 

°
˙�[ (E q )] 

˛
ˆ , (5.28)1 i 

ˇ i 1̃ ˘˙ ˆ 

a b,where L1  are the L1A and L1B estimated error values, x is 
the number of independent error terms, and qi are the respec-
tive input error parameters. The individual error terms can be 
estimated by taking the partial derivatives of the calibration 
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equation such that each error term in the process can be quan-
tized as 

a b,˜L1E q( )° ˛qi. (5.29)i ˜qi 

5.10.2. Rolled-Up On-Orbit L1 Calibration Errors 

The wrapped-up errors of the L1B calibration can be 
expressed in a similar manner, with the total L1A error 
rolled in and estimated over the DDMA region of the DDM 
(3 delays × 5 Dopplers): 

3P (4˜ ) L0 g DDM, A atm° ˝ . (5.30)
T 2 T R Total DDMA 

P ˛ G G R  ASP SP SP DDMA 

Substituting this equation into Equation 5.28 results in 

0°˜DDMA ˝q , (5.31)E q( )˛i i°qi 

where 

Total  ˜ ,q ˜ DDMA  ,q ˜ L ,q ˜q P  R ,1 g 2 crop  3 atm 3 SP 

T Rq ˜ P q, ˜ G q, ˜ G q, ˜ A.4 T 5 6 7 

The on-orbit estimated L1 calibration errors 1-σ estimates 
are shown below for each input parameter as well as expla-
nations for each term. 

1. E(Pg) is the rolled-up L1A error from Gleason et al. 
(2016). 

2. E(DDMAcrop) is an estimate of the error in the DDMA 
weighting algorithm detailed in Table 5.4. The weight-
ing algorithm uses a linear interpolation over nonlin-
ear DDM bins, and this will introduce some error in 
the cropping of the fnal value. The value of 0.1 dB 
is an approximation based on ideal simulations of 
the DDMA weighting algorithm. 

3. E(R Total) is the total error due to misestimation of the 
path loss from the GPS transmitter to the specular point 
to the receiver. Given the relatively high accuracies 
of all three of these parameters, this error is expected 
to be negligible. More details on the contribution 
due to the single-frequency GPS receiver position 
estimation performed on CYGNSS can be found in 
Wang et al. (2021). 

4. E(EIRP) = E(PT) + E(GT) is the error in the GPS transmit 
power and antenna gain correction. The best esti-
mate for this error is based on the top-down analysis 
reported in Wang et al. (2021). 

Table 5.4. L1B Input Parameter Error Estimates 

Error 
term 

Error magnitude 
(at 10 m/s 
reference wind) 

Comment 

E(Pg) 0.23 dB Rolled-up L1A error (Gleason 
et al., 2016) 

E(DDMA) 0.1 dB Error in DDMA weighting 
algorithm 

E(R_total) 0.01 dB Based on total range error 
estimates of 2000 m (very 
conservative) 

E(EIRP) 0.32 dB GPS transmitter EIRP error 

E(GR) 0.43 dB Estimated receiver antenna 
gain error from Monte Carlo 
(MC) simulation 

E(A) 0.05 dB Effective scattering area error 
from E2ES 

5. E(GR) is the error in the receive antenna gain and 
is based on the analysis of σ0 anomalies described 
in Section 5.6.4.2 after the described corrections 
to the receive antenna patterns were applied. The 
antenna gain error was estimated using Monte Carlo 
simulations based on the predicted statistical space-
craft attitude performance and best estimate of the 
receive antenna gain pattern described in more detail 
in Gleason et al. (2016). 

6. E(A) is the estimated error in the effective scatter-
ing normalization area used to convert σ to σ0. The 
CYGNSS end-to-end simulator was used to gener-
ate these values. Given the extensive validation of 
the E2ES, this error was at a relatively low value, driven 
by errors introduced due to the integration step size 
used in the table generation, plus a small amount of 
margin. 

The rolled-up L1 error budget is a function of multiple terms, 
all of which are impractical to include in a per-observation 
lookup table. For this reason, the L1 uncertainty included 
with each L1 σ0 estimate in the CYGNSS offcial products 
is considered only for the two most infuential variables: the 
magnitude of the σ0 itself and the range corrected gain at 
each observation (which wraps up both the receive antenna 
gain and range losses). As can be seen from Equations 5.13 
and 5.14 (and derived in greater detail in Gleason et al., 
2016), the partial derivative contributions weight the error 
magnitudes differently based on the observation parameter 
inputs. The largest scaling factor is the overall received power, 

https://�qi.(5.29
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Figure 5.23. L1 σ0 uncertainty at three reference σ0 levels and over a full range of received RCG. These corrections correspond to roughly 
13% of the reference σ0 at the typical (greater than 50) values of RCG. 

which scales directly with the surface σ0 and the receive 
antenna gain and path losses. Other variables that impact 
the received power or otherwise weight the error terms are 
not considered for simplicity and because they are generally 
of a lower order than the changes induced by the surface 
conditions and receive antenna gain. The resulting rolled-up 
L1 errors for three example σ0 reference values and over a 
full range of RCG are shown in Figure 5.23. 

5.11. References 

Algorithm Theoretical Basis Document (ATBD): CYGNSS 
Level  1A DDM Calibration and Error Analysis, April 
2018. 

Andersen, O. B. (2010). The DTU10 Gravity feld and Mean 
sea surface. Second international symposium of the 
gravity feld of the Earth (IGFS2), Fairbanks, Alaska. 

Bechtold, P., Bauer, P., Bidlot, J. R., Cardinali, C., Magnus-
son, L., Prates, F., & Rodwell, M. (Winter 2012/13). 
Uncertainty in tropical winds. ECMWF Newsletter, 
134, 33–37. https://www.ecmwf.int/en/elibrary/ 
14577-newsletter-no-134-winter-2012-13. 

Clarizia, M. P., & Ruf, C. S. (2016). Wind speed retrieval 
algorithm for the Cyclone Global Navigation Satellite 
System (CYGNSS) mission. IEEE Transactions on Geo-
science and Remote Sensing, 54(8), 4419–4432. 
https://doi.org/10.1109/TGRS.2016.2541343. 

Gleason, S., Al-Khaldi, M., Ruf, C., McKague, D., Wang, T., 
& Russel, A. (2021). Characterizing and mitigating 
digital sampling effects on the CYGNSS Level 1 cali-
bration. IEEE Transactions on Geoscience and Remote 
Sensing, 60, 1–12. https://doi.org/10.1109/TGRS 
.2021.3120026. 

Gleason, S., & Gebre-Egziabher, D., eds. (2009). GNSS 
applications and methods. Artech House, 530 pp., 
ISBN-13: 978-1596933293. 

Gleason, S., Ruf, C., Clarizia, M.  P., & O’Brien, A.  J. 
(2016). Calibration and unwrapping of the normal-
ized scattering cross section for the Cyclone Global 
Navigation Satellite System (CYGNSS). IEEE Trans-
actions on Geoscience and Remote Sensing, 54(5), 
2495–2509. https://doi.org/10.1109/TGRS.2015 
.2502245. 

Gleason, S., Ruf, C. S., O’Brien, A.  J., & McKague, D. S. 
(2019). The CYGNSS Level  1 calibration algorithm 
and error analysis based on on-orbit measurements. 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 12(1), 37–49. 
https://doi.org/10.1109/JSTARS.2018.2832981. 

Jansen, M. A., Ruf, C. S., & Keihm, S.  J. (1995). TOPEX/ 
Poseidon Microwave Radiometer (TMR): II. Antenna 
pattern correction and brightness temperature algo-
rithm. IEEE Transactions on Geoscience and Remote 
Sensing, 33(1) 138–146. 

https://doi.org/10.1109/JSTARS.2018.2832981
https://doi.org/10.1109/TGRS.2015
https://doi.org/10.1109/TGRS
https://doi.org/10.1109/TGRS.2016.2541343
https://www.ecmwf.int/en/elibrary


 

 
 

   

     
      

   

 

 
       

 

 
       

   

 
 

 
    

    

 

  
     

 

 
 

  
 

      
  

 

   
     

 

 
  

       

  
       

 

       

68 CYGNSS HANDBOOK 

Marquis, W. A., & Reigh, D. L. (2015). The GPS block IIR 
and IIR-M broadcast L-band antenna panel: Its pat-
tern and performance. Navigation, 62(4), 329–347. 

Misra, P., & Enge, P. (2001). Global positioning system: 
Signals, measurements, and performance. Ganga 
Jamuna Press. ISBN 0-9709544-0-9. 

Ruf, C., et al. (20 Oct. 2020). Algorithm Theoretical 
Basis Document Level 1B DDM calibration. Revi-
sion 3 Change 0, University of Michigan Doc. 148-
0137. http://cygnss.engin.umich.edu/wp-content/ 
uploads/sites/534/2021/07/148-0137_ATBD 
-L1B-DDM-Calibration_R3_release.pdf. 

Ruf, C., & Balasubramaniam, R. (2019). Development of the 
CYGNSS geophysical model function for wind speed. 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 12(1), 66–77. 
https://doi.org/10.1109/JSTARS.2018.2833075. 

Ruf, C. S., Gleason, S., & McKague, D. S. (2018). Assess-
ment of CYGNSS wind speed retrieval uncertainty. 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 12(1), 87–97. 
https://doi.org/10.1109/JSTARS.2018.2825948. 

Steigenberger, P., Hauschild, A., Thoelert, S., & Langley, R. 
(2017). US Air Force puts more power into GPS block 
IIR-M C/A-code. GPS World, 28(4), 8–9. 

Thoelert, S., Hauschild, A., Steigenberger, P., & Langley, R. 
(Sept. 2017). GPS IIR-M L1 transmit power redis-
tribution: Analysis of GNSS receiver and high-gain 
antenna data. Proceedings of the 30th International 
Technical Meeting of the Satellite Division of the Insti-
tute of Navigation (pp.  1589–1602). https://doi 
.org/10.1002/navi.250. 

Ulaby, F. T., & Long, D. G. (2014). Microwave radar and 
radiometric remote sensing. Ann Arbor, MI: Univ. 
Michigan Press. 

Wang, T., Ruf, C., Gleason, S., O’Brien, A., McKague, D., 
Block, B., & Russel, A. (2021). Dynamic calibration of 
GPS effective isotropic radiated power for GNSS-
refectometry Earth remote sensing. IEEE Transactions 

on Geoscience and Remote Sensing, 60. https://doi 
.org/10.1109/TGRS.2021.3070238. 

Wang, T., Ruf, C., Block, B., & McKague, D. (2018a). 
Characterization of the transmit power and antenna 
pattern of the GPS constellation for the CYGNSS mis-
sion. Paper presented at the July 2018 IEEE Interna-
tional Geoscience and Remote Sensing Symposium 
(IGARSS), Valencia, Spain. 

Wang, T., Ruf, C. S., Block, B., McKague, D. S., & Glea-
son, S. (2018b). Design and performance of a GPS 
constellation power monitor system for improved 
CYGNSS L1B calibration. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote 
Sensing, 12(1), 26–36. https://doi.org/10.1109/ 
JSTARS.2018.2867773. 

Wang, T., Ruf, C., Gleason, S., Block, B., McKague, D., 
& Provost, D. (2017, July). Development of GPS con-
stellation power monitor system for high accuracy 
calibration/validation of the CYGNSS L1B data. 2017 
IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS). (pp. 1008–1011). https://doi 
.org/10.1109/IGARSS.2017.8127125. 

Wang, T., Zavorotny, V.  U., Johnson, J., Yi, Y., & Ruf, C. 
(2019). Integration of CYGNSS wind and wave obser-
vations with the WAVEWATCH III numerical model. 
IGARSS 2019—2019 IEEE International Geoscience 
and Remote Sensing Symposium (pp.  8350–8353). 
https://doi.org/10.1109/IGARSS.2019.8900481. 

WAVEWATCH III Development Group (WW3DG). 
(2016). User manual and system documentation of 
WAVEWATCH III version 5.16 MMAB (Technical 
Note 329, NOAA/NWS/NCEP/MMAB, College 
Park, MD, USA, 326 pp.+ Appendices). https://polar 
.ncep.noaa.gov/mmab/papers/tn276/MMAB 
_276.pdf. 

Zavorotny, V., & Voronovich, A. (2000). Scattering of GPS 
signals from the ocean with wind remote sensing appli-
cation. IEEE Transactions on Geoscience and Remote 
Sensing, 38, 951–964. https://doi.org/10.1109/36 
.841977. 

https://doi.org/10.1109/36
https://polar
https://doi.org/10.1109/IGARSS.2019.8900481
https://doi
https://doi.org/10.1109
https://doi
https://doi
https://doi.org/10.1109/JSTARS.2018.2825948
https://doi.org/10.1109/JSTARS.2018.2833075
http://cygnss.engin.umich.edu/wp-content


 

 

 
 
 

  
    

 
 

 

 
 

 

 
 

 
   

 

 

 
 

 
 
 
 
 
 
 

  
 
 

  
 

       
   

 
 

 

 

 
 

 

 

 

 

 

    
 

  

6. Level 2 Mean Square Slope Retrieval 

6.1. Introduction 

The primary mission of the CYGNSS Project is to collect mea-
surements of ocean surface winds through variations in the 
direct versus refected GPS signals. It will be achieved through 
ftting the calibrated data obtained by the eight CYGNSS 
microsatellite observatories to the empirical or modeled func-
tions, which relate the measured signal parameters to surface 
wind. At the same time, such an ocean surface characteristic 
as the mean square slope (MSS) will be available also. 

Within the framework of the scattering model adopted 
here, the MSS can be related directly to the normalized 
bistatic radar cross section (NBRCS) σ0. On the other hand, 
the bistatic radar equation allows the connection of σ0 to the 
calibrated estimates of power for each delay-Doppler bin 
through the instrument calibration algorithm. The algorithm 
theory is based on the details of the instrument processing 
chain hardware and frmware, a model of the received signal 
power (Zavorotny & Voronovich, 2000), and estimates of the 
external and internally generated noise power. The purpose 
of this document is to describe the CYGNSS Level 2 (L2) 
MSS algorithms and provide all necessary equations for 
implementing the algorithm during the mission. Section 6.1.1 
provides science background and objectives. It explains 
the need for ocean MSS. Section 6.2 describes the phys-
ics of the problem and explains the connection between 
the NBRCS and the MSS and between the MSS and the 
ocean surface spectrum. Section 6.3 provides an overview 
of the MSS retrieval algorithm. Section 6.4 discusses the 
performance characterization and the error analysis of 
the retrieval algorithm. Section 6.5 presents a short over-
view of new approaches that use measured and modeled 
MSS for improvement of CYGNSS L2 wind speed retrievals. 

The MSS of the ocean surface is a very important quantity. 
It is crucial for understanding the physical processes at the air-
sea interface and for interpreting altimeter and scatterometer 
radar backscatter measurements (Jähne et al., 1987; Wu, 
1990; Liu et al., 1997; Walsh et al., 1998; Chapron et al., 
2000; Liu et al., 2000). The need for global MSS datasets in 
air-sea interaction research is increasingly apparent. Indeed, 
the presence of waves signifcantly enhances gas transfer rates 
across a water boundary layer. The transfer rates correlate well 
with the MSS of the waves. It has been observed in laboratory 
conditions that gas transfer velocities signifcantly increase at 
the onset of surface wave generation (Jähne et al., 1987). 

The need for ocean MSS is also evident in satellite radi-
ometry, specifcally for salinity measurements (Font et al., 
2004; Guimbard et al., 2012). At L-band, the brightness 
temperature of the ocean surface depends equally on 
three surface parameters: the sea surface salinity, the sea 
surface temperature, and the sea state, which is responsible 
for the deviations of the brightness temperature with respect 
to the fat sea model. To estimate the sea roughness effect on 
brightness temperature, various models driven either directly 
by 10 m height wind speed, U10, or by the signifcant wave 
height (SWH) have been tried without signifcant success. 
With the advent of the GPS bistatic radar technique, which 
uses L-band signals, the idea has been proposed to mea-
sure L-band limited MSS to provide sea surface roughness 
estimates for L-band radiometric measurements of ocean 
salinity (Font et al., 2004; Guimbard et al., 2012). 

6.2. Physics of the Problem 
6.2.1. Connection Between the Bistatic Radar 
Cross Section and the MSS 

According to the forward model based on the bistatic radar 
equation adopted for the case of GPS scattered signals, the 
DDM emerges as a result of the integration of the product 
of several factors over a certain ocean surface area. One of 
those factors is the bistatic radar cross section (BRCS) σ0, 
which describes the effect of ocean surface roughness. In 
the geometric optics (GO) limit of the Kirchhoff approxima-
tion (KA) this term is represented by the following expression 
(Barrick, 1968; Bass & Fuks, 1979): 

2 4˛ ˝0 ˆ ˇ ˜q q/ ° P q˜˘ / q ° , (6.1)z ˙ z 

where q 
˜ 

is the scattering vector, which can be regarded as 
˜

a function of the coordinate ˜  in the mean surface plane, 
and ˜ is the complex Fresnel coeffcient, which depends 
on signal polarization state; a complex dielectric constant 
of the refecting medium, ε; and the local incidence angle. 
In the case of GPS bistatic radar, the refected signal is left-
hand circularly polarized (LHCP). The factor P s˜ °˜  in Equa-
tion 8.1 is the probability density function (PDF) of large-scale 
“smoothed” surface slopes. The adjective “smoothed” implies 
that very small-scale components of the surface spectrum 
(of the order of several tens of centimeters) are fltered out. 
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This is a consequence of using in this technique 0.2 m long 
L-band waves, which obey the GO limit of the KA. In order to 
sense all surface scales in this scattering regime, one would 
need to use 1 mm (or shorter) electromagnetic (EM) waves. 

It should be noted here that the GO limit of the KA is valid 
when the surface waves are high enough—namely, when the 
Rayleigh parameter for the rough ocean surface, R ° khcos˜a 

>> 1, where k = 2π/λ and h is the root mean square (RMS) of 
surface elevations. This regime holds for wind speeds greater 
than 4–5 m/s. For the case of a small Rayleigh parameter, 
Ra < 1 (and respectively small MSS), which corresponds to 
low winds U < 4–5 m/s–1, the scattering mechanism changes 
toward a weak diffuse scattering. Instead of quasi-specular 
scattering, driven by surface slopes, higher-order Bragg scat-
tering governed by parameter Ra comes into play. Since Ra 

is proportional to h, which in turn results from integrating the 
entire surface elevation spectrum, it, in contrast to the GO-KA 
approximation, also includes very small-scale components 
of the surface spectrum. Recently, a bistatic scattering model 
was proposed that describes such a weak diffuse scattering 
providing a smooth transition to the regime of strong diffuse 
scattering (Voronovich & Zavorotny, 2017). 

It is believed that for linear surface gravity waves, the 
˜slope PDF P s˜ ° can be approximated by the anisotropic 

bivariate Gaussian distribution (Zavorotny & Voronovich, 
2000; Elfouhaily et al., 2002; Soulat, 2004), which for the 
case of wind directed along the x- or y-axis is 

˜ 1
P s˜ ° � 

22˛ mss mss (1�b )x y x y, 

˝ ˆ 2 s s  s2 ˇ˙1 s x y y˘ � x ��exp � �2b � ,(6.2)x y,2˘ 2(1�b ) ��
mss mss mss mss �

�
� 

x y, x x y y� � 

where mss  and mss  are MSSs of the sea surface for two x y 

orthogonal components, one along the wind direction and 
another across it; bx y,  is the correlation coeffcient between 
two slope components. Upon substitution of Equation 6.2 
into Equation 6.1, we obtain an algebraic expression that 
connects the MSS components with the NBRCS, ˜0: 

˘ /
2 ˜q q  °4 

z˛0 ˜ °q 
˜ 
� 

22 mss mss (1�b )x y x y, 

˝ ˆ 2 2 ˇ˙2b q q q1 q x y, x y  y� � x ��exp � � � . (6.3)
2 2� 2 (1q �b )�mssx mss mss mssy �� z  x y, x y�
 � � 

6.2.2. Connection Between the MSS and the 
Surface Elevation Spectrum 

By defnition, the MSS components are introduced as 

2 2 2ˆ s ˆ ˛ ˇ˜ °  (6.4)mss ˛̃
 
d ˛ ;x y, x y, x y,˘˘ 

˛ ˛˙ ˝ 

b ˜ s s / mss mss ; (6.5)x y, x y  x y 

s s  ˆ ˛ ˛ ˇ˜ °˛ d2˛ . (6.6)x y  x y˘˘ 
˜ 

˛ ˛˙ ˝ 

Therefore, two MSS components, mssx and mssy, are 
determined solely by the wave-number integral from the˜ 
ocean elevation spectrum ˜ ° times ˜ 2˝ ˛ . This product x y, 

is called a slope spectral density. The limit of integration at 
high wavenumbers is ˜* ˛ kcos° / 3, which plays the role 
of a low-pass flter, which is related to the EM wavelength 
λ = 2π/k and the angle of incidence θ. There are some indi-
cations that the actual PDF of slopes does not exactly follow 
a Gaussian shape at their tails (Cardellach & Ruis, 2008). 
In terms of the glistening zone, it implies that this departure 
affects the periphery of the zone. However, for the conditions 
of the CYGNSS mission, most of the contribution to the signal 
comes from the peak area of the PDF of slopes. Frequently, 
when it is not possible to measure each of two orthogonal 
components, the total MSS is used: 

2 2 2 2 2˛̃
 
d ˛mss ˆ s ˆ s ˇ s ˆmss  ˇmss ˆ ˛ ˜ °  . (6.7a)x y x y �� ˘ 

˛ ˛˙ ˝ 

An alternative defnition of the total MSS (Soulat, 2004), 
which better fts the expression in Equation 8.3 for ˜0, can 
be used here: 

mss ˜ 2 mss mss . (6.7b)x y 

When the wave spectrum is directionally isotropic, the 
defnitions in Equations 6.7a and 6.7b are equivalent. 

˜
In the case of global winds, the model spectrum ˝ ˛˜ °  

proposed by Elfouhaily et al. (1997) is widely used. An 
example of the Elfouhaily et al. (1997) slope spectrum taken 
along the wind direction is shown in Figure 6.1. 

This empirical model describes deep-water waves 
driven by winds of constant direction under diverse wave-
age (often called “fetch”) conditions. This model has two input 
parameters, the local wind speed at 10 m height, U10, and the 
wave age, or fetch. It was designed to agree with in situ obser-
vations of the frst sun-glint-derived wave slope measurements 
of Cox and Munk (1954), performed several decades ago. 
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Figure 6.1. Ocean surface slope spectrum from Elfouhaily et al. (1997) taken along the wind direction. 

For conditions when the surface can be described by 
the Elfouhaily et  al. (1997) spectrum (assuming that the 
fetch is known), it is possible to retrieve the wind U10 from 
the CYGNSS measurement. At the same time, the retrieval 
of the total MSS is available as a by-product of the wind 
retrieval. In some cases, the total MSS retrieval may be the 
only product that has a high level of validity. This may occur 
when sea roughness cannot be described solely by the local 
wind (e.g., in the presence of unknown swell, currents, surfac-
tants), so the surface cannot be described by the Elfouhaily 
et al. (1997) spectrum or its proxy. For example, if swell is 
present that does not interact with the waves driven by the 
local wind, then the total spectrum of the wave will be 

˜ ˜ ˜
˛ ˜ °.˝ ˜ ° ˙ ˝ ˜ °˛ ˆ˝ ˛ (6.8)tot  wind  swell 

And the total MSS component will obey the equation 

mss  ˜ mss ° mss . (6.9)x y  tot, ,  x , ,y wind  x , ,y swell 

As was pointed out above, the MSS that determines the 
BRCS through the PDF of slopes is not a full-wave slope. Even 
though the sea surface contains wave harmonic components 
both longer and shorter than the L-band electromagnetic 
waves, the short waves can be disregarded in a process 
of forward quasi-specular refection under the strongly dif-
fuse GO approximation. Therefore, the full surface spectrum 
should be cut off at the high end of wave numbers. There 
are various choices of cutoff wave number ˜° that are dis-
cussed in the appendix: Ocean Surface Bistatic Scattering 
Forward Model. 

6.3. Retrieval Algorithm Overview 
6.3.1. Theoretical Description 

Since the regime of CYGNSS measurements does not 
allow one to distinguish between the along- and cross-wind 
directions, one can assume that mssy ˜ mss ˜ mss / 2 andx 

2b ˜ 0. Then the expression for the bistatic radar cross sec-x y, 

tion from Equation 6.3 simplifes to 
2 2˙ q ˆ

4 ˙ q ˆ˜ ˝˛0 ˜ °q ˘
ˇ

� � exp�� �. (6.10)� 2 �mss q  q mss � z � � z � 
Factors containing components of the scattering vector 

q 
˜
 can be expressed through local (at the point of refection) 

incidence and scattering angles, ˜1 and ˜2 (see Figure 6.2). 

2
ˇ q ˘ 2 1˜ ˙ ˛1 ˛2 cos˝ ˆ cos˛1cos˛2 °sin sin 
� � � , (6.11)2
� qz ˜cos˛ ˆ cos˛ °� 1 2 

Figure 6.2. Geometry of quasi-specular scattering. 
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22 2 2 q ˜sin˛ cos˝ ˆ sin˛ ° ˇ sin ˛ sin ˝˙ 2 1 2 
2 
˘ 

2 . (6.12) 
qz ˜cos˛ ˇ cos˛ ° 1 2 

In principle, MSS can be retrieved from Equation 8.10 
for any combination of incident and scattering angles ˜1 

and ˜2 (and azimuthal scattering angle φ) by solving a 
transcendental equation: 

2 ˙ 4 ˆ 
2 ˇ q ˘ ˜˝logmss � 

q 
� log� � � � � � log˛0 ˜ °q � 0. (6.13)

2 �q mss q � 
z � z � 

However, it would be more benefcial to use ˛ ˝  in0 ˜ °  
° °the specular direction, where ˜ ˜  ̃ and ˜ ° 0. Then 1 2 

Equation 6.10 simplifes to 

˜ ° 2
˙ ˛ 

˝ ˛˜ ° ˆ . (6.14)0 mss 

The Fresnel refection coeffcient of the ocean surface, ̃  
, is evaluated in the nominal specular direction described by 
the incidence angle θ. 

6.3.2. Baseline Algorithm 

In Chapter 5, Equation 5.20 was obtained, which expresses 
NBRCS ˜0 through available calibrated measured power 
values from the L1A calibration described elsewhere and 
parameters of the system. This equation can be rewritten 
here as 

° ˝˛P Sig , (6.15)0 ˆ˜̂ ,f 

where α is a coeffcient that depends on various geometric, 
transmitter, and receiver parameters: 

3 2 2 1 2˜4˝ ° R R L  LT R  atm atm˙ ˘ , (6.16)
2 2P T  ˆ G G ˇ ˆT i  T R  ̨̂ ,f 

where 

Sig 1. P  is the calibrated L1A DDM, as a function of delay 
˜̂ ,̂f 

and frequency; 
2. RT is the GPS transmitter to SP path length, calculated using 

the International GNSS Service (IGS) positions of the 
GPS satellites and estimated SP location; 

3. RR is the specular point (SP) to CYGNSS satellite path 
length, calculated using the positions of the CYGNSS 
spacecraft and estimated SP location; 

4. L1  and L2  are the atmospheric losses as the signal trav-atm atm 

els from the GPS satellite to the surface and from the 

surface to the receiver, respectively (These terms will be 
estimated on the ground using a propagation model 
at the GPS signal transmit frequency.); 

5. PT is the GPS transmit signal power and is estimated using 
the absolute power of the direct signal; 

6. Ti is the coherent time integration; 
7. λ is the signal wavelength; 
8. GT is the GPS antenna gain for the refection geom-

etry (This will be calculated using a model of the 
GPS antenna gain pattern generated using power 
measurements from the direct signal. The above two 
terms will be estimated together as a single combined 
quantity.); 

9. GR is the CYGNSS nadir antenna gain, which is a function 
of refection geometry and spacecraft orientation (This 
term will be estimated using a prelaunch calibration of 
the antenna pattern and the refection viewing geom-
etry.); and 

10. ° ̂
,̂f  is the effective scattering area for the delay-Doppler ˜ 
(DD) bin at ˜̂ ,f̂ . This area will be estimated based on 
the delay-Doppler surface geometry calculated using 
modules within the CYGNSS E2ES. 

Details for the calculation of each of the above terms are 
described in Chapter 5. 

For the CYGNSS geometry and system parameters, 
the coeffcient ˜ °10 at ˜ ° 35˜ for the DDM bin with 
˜̂  ° 0, f̂ ° 0, which corresponds to a nominal SP on the 
surface. The MSS estimation algorithm is found by solving 
for MSS in Equation 6.14, or 

˜ °˙
2

˛ 
mss ˆ , (6.17)

˝ ˛˜ °0 

where ˜ is the Fresnel refection coeffcient evaluated at 
the incidence angle of the SP for a given complex dielectric 
constant of the ocean surface ε. Thus, the MSS estimation 
error is determined by uncertainties of several parameters 
entering Equation 6.17. Two leading parameters are NBRCS, 
˜0, provided by the Level 1 DDM calibration algorithm 
(Chapter 5), and the absolute value squared of the Fresnel 

˜ ° 2
˝ ˛refection coeffcient . In turn, the Fresnel refection 

coeffcient is determined by the complex dielectric constant, 
ɛ, of the ocean surface and the incidence angle at the SP. 
Estimation of ɛ requires knowledge of the sea surface tem-
perature and salinity. Related uncertainties will be analyzed 
in Section 6.4. 



  

 
 

 
 
  

     
 

 

 

 

 
 

   
 
 
 

  

  

 

 

 
  

 
 

  

2 

6. Level 2 Mean Square Slope Retrieval 73 

6.4. Performance Characterization 
6.4.1. Accuracy 

If we put aside the issue of geophysical variability of the 
MSS of ocean waves, the accuracy of the MSS retrieval 
based on Equation 6.17 is determined by the uncertainty 
in two factors entering Equation 6.17: NBRCS ˜0 taken 
in the specular direction and the absolute value squared 
of the Fresnel refection coeffcient of the fat ocean surface, 

˝ ˛ , also taken in the specular direction. The analysis of 

the ˜0 uncertainty is done in Chapter 5. 
Let us frst start with an estimation of the accuracy of the 

refection coeffcient. In the case of LHCP, the expression for 
the complex Fresnel refection coeffcient ˜ at the interface 
between air and a medium (in our case, sea water) with a 
complex dielectric permittivity ε is 

˜ °  

˙ 2 2 ˆ1 ˛ cos˝ ˇ ˛ ˇ sin  ˝ cos˝ ˇ ˛ ˇ sin ˝
�˜ °˝ � ˘ ˇ �, (6.18)

2 22 �̆ ˛ cos˝ � ˛ ˇ sin ˝ cos˝ � ˛ ˇ sin ˝ �� 

where θ is the local incidence (or refection) angle. We 

˜ ° 2
˝ ˛performed calculations of  for a range of incidence 

angles θ and various values of water temperature and salin-
ity, which are the two most important driving parameters of 
the complex dielectric permittivity ε of sea water. The latter 
can be calculated using either the Klein and Swift model 
(Klein & Swift, 1977; Ulaby et al., 1986) or the Meissner 
and Wentz model (Meissner & Wentz, 2004). Those models 
for sea water permittivity rely on L-band measurements. They 
are close enough to each other at those frequencies, and no 
other models have been shown to be more reliable (Ellison 
et al., 1998). The analytical expressions for ε as a function of 

radio frequency, water temperature T, and salinity S for the 
Klein and Swift model are given in Appendix 6A. The radio 
frequency of the received signals for CYGNSS is known with 
high accuracy. It is the L1 band frequency, which is equal 
to 1.57542 GHz. Figures 6.3a and 6.3b demonstrate the 
dependence of both the real and imaginary parts of the 
dielectric permittivity of ocean water (ε΄ and ε΄΄, respec-
tively) on water temperature and salinity. 

Therefore, the retrieval of MSS depends on sea surface 
temperature (SST) and sea surface salinity (SSS). Analyses 
reveal that the changes in SSS and SST over time and space 

˜ ° 2
˝ ˛are small enough that using a single value of  main-

tains an acceptable error tolerance (Figure 6.4). Therefore, 
LUTs for monthly and zonal averaged Fresnel coeffcients, 
at a 1° × 1° resolution, are used for the derivation of MSS 
(see Figure 6.5). 

6.4.2. Error Analysis of the Level 2 MSS Retrieval 
Algorithm 

The creation of the L2 MSS product is contingent on the 
availability of input observational data (from CYGNSS 
and ancillary data sources) and accurate estimates of their 
errors. The accuracy of the L2 MSS product is dependent 
on the accuracy of the NBRCS ˜0 retrieval, the accuracy 
of the scattering geometry determination (incidence angle), 
and the accuracy of the Fresnel refection coeffcient esti-
mates. It should be remembered that this algorithm is built 
on two basic assumptions: validity of the GO limit of the KA 
and validity of the Gaussian PDF of slopes. At very rough 
surface conditions, such as in the hurricane wind maximum 
areas, both of these assumptions may be violated. These 
scenarios would require an independent calibration and 

(a) (b) 
Figure 6.3. Dependence of both real and imaginary parts of dielectric permittivity of ocean water (ε΄ and ε΄΄, respectively) on water 
temperature and salinity. 
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˜ ° 2
˝ ˛Figure 6.4. Dependence of  on incidence angle for a wide range of temperatures and salinities calculated using the Klein and 

Swift model (Klein & Swift, 1977; Ulaby et al., 1986). 

˜ ° 2
˝ ˛ ˝ ˛Figure 6.5. (a) Average (zonal and seasonal) Fresnel refection coeffcient ; (b) standard deviation (zonal and seasonal) of .˜ °  

2 



  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

 

 

  
 

   

  

6. Level 2 Mean Square Slope Retrieval 75 

2 2
˝ ˙ ˝validation of the MSS by using colocated and simultaneous ˙mss 1

E T˜ ° ˆ ˇT ˆ ˇT , (6.24)
2in situ measurements of the MSS. In some circumstances, this ˛0 ˙T ˙T˝ 

may be impractical. 
The expression for generating the L2 MSS data product 

is given by Equation 6.17. The equation is repeated below 
with the refection coeffcient from Equation 6.18: 

˜ °˙
2

˛ 
mss ˆ . (6.19)

˝ ˛˜ °0 

Each uncertainty in the L2 MSS retrieval algorithm will be 
considered as an independent uncorrelated error source. 
The total error in the L2 MSS retrieval is the root sum square 
(RSS) of individual errors contributed by the independent 
variable of Equation 6.19. For relative MSS error, we have 

1/2 
˝ 4 ˙ˆmss 2˛ ˇ�E p˜ °˘ , (6.20)i mss �̌ i ̨ 1 �̆ 

where  t he  e r ro r  va r iab le s  a re  
p ˙˛ ˝˜ °, p ˙˝ , p ˙ T , p ˙S . The individual errors 1 0 2 3 4 

E p˜ °i  can be expressed via partial derivatives as 

˛mss 
˙p . (6.21)E p˜ ° ˝ 1 

i i mss  ˛pi 

One can specify the error for each of these variables: 
2

˝ ˙˛0ˆmss 
˙˛ ˇ , (6.22)E ̃ ˛0 ° ˇ 

˛0 ˆ˛0 
0 ˛0 

2 2
˙ ˆ ˙ˆmss 1

E ̃ °˛ ˇ ˘˛ ˇ ˘˛ , (6.23)
2˝0 ˆ˛ ˆ˛˙ 

2 2
˝ ˙ ˝˙mss 1

E S˜ ° ˆ ˇS ˆ ˇS. (6.25)
2˛0 ˙S ˙S˝ 

To estimate E ̃ ˛0 °, empirically derived values for ˜0 

and °˜0, based on tests under different wind speeds, are 
employed. The error estimates for ˜0 also include uncertain-
ties related to the antenna gain model, the low noise ampli-
fer (LNA) model, the GPS transmitter model, and so on. For 
details, see Chapter 5 and Gleason et al. (2018). Therefore, 
we use ˜0 and °˜0 estimates for 10 m/s reference wind: 

˜0 = 15 dB (31.6) and °˜0 = 0.39 dB (1.09) for 
U10 = 10 m/s–1 . 

Partial derivatives of 
2
 in Equations 6.23–6.25 are 

computed numerically because the analytical derivation is 
˜ 

2
not practical due to a complicated dependence of over 
the arguments θ, T, and S. Examples of such computations 
are shown in Figures 6.6–6.8. 

˜

2
˜ °1

Figure 6.6a represents  as a function inci-
2 ˜T° 

dence angle θ for a range of sea surface temperatures T 
between 10°C and 35°C and for a fxed sea surface salinity 

2
˜ °1

S = 40 psu. Figure 6.6b shows as a function 
2 ˜S° 

(a) (b)
2

Figure 6.6. Relative partial derivatives of  over temperature and salinity as a function of incidence angle. ˜

https://6.23�6.25
https://�S.(6.25
https://��,(6.23
https://�T,(6.24
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(a) (b)
2

Figure 6.7. Relative partial derivative of  over incidence angle as a function of temperature and salinity. ˜

(a) (b)
2

Figure 6.8. Relative partial derivative of  over temperature and salinity. ˜

incidence angle θ for a range of sea surface salinities S 
between 10 and 40 psu and for a fxed sea surface tem-
perature T = 35°C. Analogously, Figures 6.7a and 6.7b 

2
° ˛1

represent, respectively, the dependence of on 
2 °˜˛ 

temperature and salinity at fxed salinity and temperature for 
a range of incidence angles θ. And fnally, Figures 6.8a and 

2 2
˜ °  ˜ °1 1

6.8b show cuts of functions and 
2 2˜S ˜T° ° 

along parameters such as temperature and salinity, keep-
ing other parameters constant. All these plots give an idea 
of the relative magnitudes of values of quantities entering 

Equations 6.22–6.25. To obtain values of respective errors, 
E ̃ ˛0 °, ˜ °, E T˜ °, and E S , one needs to input errors E ˛ ˜ °  
for °˜0, °˜ , ˜T , and ˜S. In the following tables, we pres-

˜mss ent results of calculations of the relative MSS error, , 
mss 

based on Equations 6.20–6.25 for some limiting values of 
the parameters involved. 

For Table 6.1, we used some reasonable values for input 
errors shown in the header of the table. One can see that 
the relative MSS error for U10 = 10 m/s–1 and for the range 
of incidence angles between 0 and 70° lies within 3.7%. 
The maximum relative MSS errors increase to 4.3% if a more 
conservative estimate is taken for the input errors shown in 
the header of Table 6.2. The following conclusions can be 

https://6.20�6.25
https://6.22�6.25


  

  
 

 

  
 

  

 
 

 
 

 

 

 

 
 
 

  
 
 
 
 
 
 

  

 
 

  
 
 
 
 

 
 

   
 

   

  

   

   

   

   

  

   

   

   

   

6. Level 2 Mean Square Slope Retrieval 77 

Table 6.1. Relative MSS Error (U10 = 10 m/s–1, Δσ0 = 1.09, Δθ = 0.5°, ΔT = 0.5°C, ΔS = 2 psu) 

Parameters θ = 0° θ = 35° θ = 70° 

SSS = 20 psu, SST = 10°C 3.47∙10–2 3.47∙10–2 3.61∙10–2 

SSS = 40 psu, SST = 10°C 3.48∙10–2 3.48∙10–2 3.61∙10–2 

SSS = 20 psu, SST = 35°C 3.54∙10–2 3.54∙10–2 3.71∙10–2 

SSS = 40 psu, SST = 35°C 3.51∙10–2 3.52∙10–2 3.66∙10–2 

Table 6.2. Relative MSS Error (U10 = 10 m/s–1, Δσ0 = 1.09, Δθ = 1°, ΔT = 1°C, ΔS = 5 psu) 

Parameters θ = 0° θ = 35° θ = 70° 

SSS = 20 psu, SST = 10°C 3.52∙10–2 3.52∙10–2 3.68∙10–2 

SSS = 40 psu, SST = 10°C 3.57∙10–2 3.57∙10–2 3.76∙10–2 

SSS = 20 psu, SST = 35°C 3.91∙10–2 3.92∙10–2 4.31∙10–2 

SSS = 40 psu, SST = 35°C 3.78∙10–2 3.79∙10–2 4.13∙10–2 

drawn from these numbers. For winds near 10 m/s–1, the 
MSS error is mostly determined by the input SST and SSS 
errors. 

6.4.3. Overall Uncertainty 

Above we considered errors in determining the MSS due to 
thermal and speckle noise assuming that the MSS remains 
constant within the scene. This is only part of the uncertainty 
in the MSS retrieval. There are other factors that can add to 
the overall uncertainty. 

There are factors related to the variability of the trans-
mit signal and of the parameters of the receiving system. All 
of them can be boiled down to an uncertainty in the coeffcient 
α introduced above in Equations 6.15–6.16. The coeffcient is 
needed to calculate MSS from ˜0 measured in the specu-
lar direction. The uncertainty in the physical and technical 
parameters composing it can be eliminated, or signifcantly 
reduced, by calibration procedures or by ancillary measure-
ments. These procedures are described in Chapter 5. 

First, the most important uncertainty is in the spatial vari-
ability of the MSS feld, whereas for our estimations, we 
assume a stable, average wave spectrum. Even given a 
homogenous wind feld, which is an input for the MSS, the 
variations in the wave elevation spectrum within the spa-
tially limited footprint sampled over a limited time interval 
can be signifcant simply due to the statistical nature of the 
surface wave phenomenon. Additionally, wave statistics can 
be affected by limited fetch, swell, currents, surfactants, and 
bathymetry. If the scales of this spatial variability are smaller 
than or close to the spatial resolution of the system, this factor 
can affect the accuracy of the MSS retrieval. 

Our retrieval algorithm is based on Equation  6.17, 
which, in turn, is based on the radar bistatic equation 
and a strong diffuse scattering regime characterized by 
very large values of the Rayleigh parameter, Ra >> 1. This 
regime holds for wind speeds greater than 4–5 m/s, and 
it is described by the GO limit of the KA and Gaussian 
PDF of surface slopes (Zavorotny & Voronovich, 2000). 
When this scattering model becomes inaccurate, it can 
be augmented by the small slope approximation (SSA; 
Voronovich & Zavorotny, 2014). For the case of a small 
Rayleigh parameter, Ra < 1 (and respectively small MSS), 
which corresponds to low winds U10 < 4–5 m/s–1, the scat-
tering mechanism transitions to a weak diffuse scattering 
(Voronovich & Zavorotny, 2017). For extremely low winds 
with U10 < 2 m/s–1, the weak diffuse scattering decreases 
further, and the coherent scattering emerges. In this case, a 
traditional bistatic radar equation needs to be augmented 
by an additional coherent term. An improved bistatic radar 
equation that accounts for the coherent scattering and 
other previously omitted effects is developed by Voro-
novich and Zavorotny (2018). Since the NBRCS ˜0 at 
the weak diffuse and coherent scattering regime no longer 
depends on the MSS, the relationship in Equation 6.13 
does not hold for winds U10 < 4–5 m/s–1, and therefore 
the MSS retrieval cannot be achieved for this range of 
winds using the algorithm described above. 

The case of very steep and breaking waves can also be 
challenging for the MSS retrieval based on either GO or 
the SSA, but in this case, the notion of the MSS itself becomes 
questionable. 

https://6.15�6.16
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6.5. Use of Measured and Modeled 
MSS for Improvement of L2 Wind Speed 
Retrievals 
Recently, a modifcation to the L2 wind retrieval algorithm 
was proposed (Wang et al., 2018) that aims to exclude 
the effect of any nonlocally generated swell and/or limited 
fetch effects from the retrieved MSS and its associated nor-
malized radar cross section. The approach is based on a 
subtraction from the CYGNSS-observed MSS through the 
use of an MSS correction that is intended to compensate for 
non–fully developed sea conditions. The MSS correction is 
obtained from an ancillary numerical wave model forced 
by model winds. Note that this process must be performed 
carefully in order to reduce the possibility of the correction 
introducing a direct dependence on the model winds used 
in forcing the wave model. Two methods of computing the 
MSS correction (one called the “excess MSS” and a second 
called the “MSS anomaly”) have been developed. Below 
both approaches are briefy described. 

6.5.1. Background of Sea State Modeling 

In the current L2 retrieval algorithm, the wind speed is retrieved 
using empirical geophysical model functions (GMFs) based 
on matchups with the ground truth wind speed. The baseline 
retrieval algorithm divides the sea state into two different 
types: a “fully developed” type and a “limited fetch” type. 
The fully developed sea has a sea state independent of the 
wind forcing extent (fetch) and/or duration, while the limited 
fetch sea is typical for situations when the wind is not constant 
in speed and direction, such as in hurricanes. However, this 
division oversimplifes the large variety of sea state behaviors 

that may occur. It also does not account for the possible 
presence of swell generated by distant wind systems (Ruf 
& Balasubramaniam, 2019). Sea state conditions, includ-
ing the presence of external swell and the degree of wave 
development, complicate the ocean surface wave spectrum 
and increase uncertainty in wind speed retrieval. 

An attempt to tie the measured NBRCS (or MSS) to the wind 
speed alone shows signifcant residual errors (scatter), which 
have also been observed in TechDemoSat-1 (TDS-1) retrievals 
(Foti et al., 2015). The error in wind speeds retrieved from the 
observations is strongly correlated with the signifcant wave 
height (SWH) of the ocean (Clarizia and Ruf, 2017). A similar 
scatter is observed in the frst wind speed and MSS retrievals 
based on the CYGNSS data. These results show that there is 
a necessity to consider the sea state’s infuence on the MSS, 
especially the nonlocal swell contribution to the surface rough-
ness. Also, understanding the L-band signal response to both 
waves and wind will be helpful to provide higher-accuracy L2 
data products for both wind speed and MSS. 

6.5.2. Excess MSS Approach 

The “excess MSS” is defned as the difference between the MSS 
calculated using the IFREMER (Institut Francais de Recherche 
pour l’Exploitation de la Mer) implementation of the WAVE-
WATCH III (WW3) numerical model (WAVEWATCH III 
Development Group, 2016) and the MSS calculated using 
the Elfouhaily et al. (1997) spectral model for fully devel-
oped seas at the local forcing wind speed used in the wave 
model. The excess MSS then should represent the difference 
between the WW3-obtained MSS (which includes nonlocal 
swell, fetch effects, etc.) and that which would occur if the 
MSS were the result of only the local wind. By subtracting 

Figure 6.9. Physics of extracting wind-dependent MSS. 



  

     

 
 
 
 
 
 
 

 
 
 

 
 
 

   
 
 

 

 
 

   
   

 

 
 
 
 

 
 

 

 

 
 

 
 

 

6. Level 2 Mean Square Slope Retrieval 79 

the excess MSS from the CYGNSS measured MSS, the 
resulting MSS should have nonlocal wave and limited fetch 
effects removed and when converted back into an NBRCS 
should yield an improved wind speed estimate. 

Figure 6.9 illustrates the concept of the method for a 
situation in which nonlocal swell contributions occur at 
length scales greater than those associated with local wind-
generated waves (although the method is not limited to this 
case). The IFREMER WW3 numerical model generates an 
MSS from its computed wave spectrum by integrating over the 
spectrum up to the WW3 cutoff wavenumber of 2.1 rad/m; 
the resulting MSS includes both local wind and swell contribu-
tions. Use of the local wind speed in the Elfouhaily et al. model 
and computing the resulting MSS up to the same 2.1 rad/m 
cutoff wavenumber should estimate the local wind contribution 
to the MSS. The difference between the WW3 and Elfou-
haily et al. MSS values is then the “excess MSS” associated 
with nonlocal waves. Note that the 2.1 rad/m WW3 cutoff 
wavenumber is below the 4 to 12 rad/m range (depending 
on incidence angle) below which ocean spectrum contribu-
tions are expected to contribute to the CYGNSS-observed 
MSS. However, this does not impact the contribution of the 
excess MSS, since the WW3 and Elfouhaily et al. results are 
obtained for the same cutoff wavenumber. 

Mathematically, the WW3 model takes input wind felds˜
 and produces a wave spectrum ˝ ˛  and associ-U10 WW ˜ °  

°2ated MSS sWW ˜ ° (up to the cutoff wavenumber ˜cut ˛̃  of the 
WW3 model runs). Using the Elfouhaily et al. model for a fully 

developed sea, we have a one-to-one mapping between ˜°2the wind speed and MSS ˛ under the assumedU10 sFD ˜ °  
Elfouhaily et al. spectrum ˝ ˜ °. The excess MSS is then FD ˛̃

 

˜ ˜2 2 2˝ ˙° s ˜ °˛ ˆ ° ˜ °,s ° s ˛ (6.26)WW FD 

which is the WW3 model prediction of the infuence of all 
sea states—for example, wave age, limited fetch, nonlocal 
swell, and so on. Note that the excess MSS should have 
a reduced dependence on local wind forcing, since the 
estimated fully developed MSS (which is directly dependent 
on the local wind) is removed. 

The next step is to compute the wind-dependent MSS by 
subtracting the excess MSS from the CYGNSS MSS: 

2 2 2s̃ ˜ s ° ˛s̃ . (6.27)CY CY 

The wind speed retrieval is then performed by converting 
˜2sCY back into a corrected NBRCS and applying the GMF. 
At present, the GMF used is that for the original CYGNSS 
dataset; future work will consider rederivation of the GMF 
using the corrected NBRCS values. 

To assess the effectiveness of the correction, the retrieved 
wind speeds of CYGNSS were checked against the cor-
responding European Centre for Medium-Range Weather 
Forecasts (ECMWF) wind speeds as the truth for a period of 
200 days starting from March 18, 2017. The upper plot 
of Figure 6.10 shows, for wind speeds higher than 10 m/s, 
that the wind speed bias (red curve) after correcting for the 

Figure 6.10. Errors of CYGNSS retrieved wind speeds before (blue) and after (red) correcting for the excess MSS. 
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excess MSS is increased compared to that before the cor-
rection (blue curve). The lower plot also shows an increase 
in the standard deviation of retrieval error (red curve) after 
the MSS correction is applied for wind speeds higher than 
12 m/s. However, a modest improvement in standard devia-
tion with no increased bias is observed for wind speeds less 
than ~ 7 m/s. These results suggest that the wave model 
information is most useful at lower wind speeds rather than 
higher wind speeds. 

A more advanced approach would model both the local 
wind and nonlocal swell spectra for the purpose of a con-
sistency check among the measured MSS, the MSS and 
SWH modeled with the WW3, and ancillary SWH data; 
this approach has yet to be implemented. 

6.5.3. MSS Anomaly Approach 

Analysis of the results in Figure 6.10 suggested that the excess 
MSS may suffer from the inapplicability of the assumed Elfou-
haily et al. model for describing fully developed sea condi-
tions. An alternative approach for estimating the “standard 
condition” MSS was therefore developed. In this alternative 
approach, an empirical “standard” MSS was determined 
by ftting a low-degree polynomial to the WW3 MSS as a 
function of local wind speed . Nonlocal swell or limitedU10 

fetch effects contributions to the MSS (now called the MSS 
anomaly) were represented again through a subtraction of 
the two quantities: 

˛MSSY ˝ MSS  3 ˙Polynomial U˜ °. (6.28)WW 10,ĖCMWF 

Figure 6.11 is a scatterplot of WW3 MSS versus the 
corresponding ECMWF forcing wind speed for CYGNSS 
measurement samples for 200 days in 2007. 

Linear and quadratic fts to the MSS versus wereU10 

examined, and it was found that the linear ft provided 
improved wind retrieval performance. The upper plot of Fig-
ure 6.12 illustrates a reduced bias (red curve) of retrieved 
wind speeds after correcting for the MSS anomaly for wind 
speeds higher than 12 m/s. The standard deviation of the 
retrieval error also does not increase at higher wind speeds 
(red curve, bottom panel of Figure 6.12) while retaining a 
similar improved performance at lower wind speeds. 
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Figure 6.12. Errors of CYGNSS retrieved wind speeds before (blue) and after (red) correcting for the MSS anomaly. 
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Appendix 6: Klein-Swift Ocean 
Dielectric Model 

According to the empirical model of Klein and Swift (1977), 
the real and imaginary parts of the dielectric constant of sea 
water at microwave frequencies are, respectively, 

2 2Re˛ ˛  ̆ ˜˛ �˛ ° ˜ ˘˝ ˙ ° (6A1)ˇ / 1ˆ s ˆ 

and 

2 2  �˛ ˝  / 1˜Im ˘ ˙ ˛˜ �˛ ° �˝ ˙  ° ˆ / ˛ ˝ . (6A2)s ˇ 0 

9Here, ˜ ˛ 2° f ˝10  is the radian frequency (rad/s), and 
°12f is frequency in GHz; ˜ ˛ 8.854 ̋ 10  is the dielectric 0 

permittivity of free space in farads per meter. ˜° ˛ 4.9 is the 
dielectric permittivity of water at infnite frequency; ˜ ° ˜s a sT 

is the static dielectric constant, where 

˜5 ˜3a ° ˛1 1.613 10˝ TS  ˜3.656 ̋ 10 S ̨  
˜5 2  ˜7 33.210 10˝ S ˜ 4.232 10˝ S , (6A3) 

°1˜sT ˛ 87.134 °1.949 ̋ 10 T ° 
°2 2 °4 3˝ T ˙ 2.491 10 (6A4)1.276 10  ˝ T . 

˛ ˛˙ 0 exp˜ˆˇ˝ ° is the ionic conductivity in mhos per meter, 
where 

˝3˛ ˙ S˜0.182521˝1.46192 10ˆ S ̌0 
˝5 2 ˝7 3ˆ S ˝1.28205 10 ° (6A5)2.09324 10  ˆ S , 

and ˜ ° 25 ̨ T , 

˝2 ˝4 ˝6 2˛ ˙ 2.033 10 ˇ1.266 10 ˘ ˇ2.464 10 ˘ˆ ˆ ˆ 
˝5 ˝7 ˝8 2˝S˜1.849 ̂ 10 ˝ ˆ ˘ ˇ2.551 10ˆ ˘ ° 2.551 10 . (6A6) 

Here, S is sea water salinity in parts per thousand, and T 
is sea water temperature in °C. 

˜ ° b̃ 0 is the relaxation time in seconds, where 

˜5 ˜4b ° ˛1 2.282 10˝ ST  ˜ 7.638 10˝ S ̃  
˜6 2  ˜8 37.760 10˝ S ˛1.105 10˝ S (6A7) 

and 

°11 °13˜0 ˛1.768 10 ° 6.086 ̋ 10 T ˙˝ 1.10 
°14 2 °17 3  ˝ T ° 8.111 10 (6A7)1.104 10  ˝ T . 



 

 

  
 

 
 

 

  

 

 

   

 

  
 

  
   

   
 

  
 

 

  
 

 

   
   

 

  

 

       
   

 
 

 
 

 

 

 
 
 
 

  

7. Level 2 Wind Speed Retrieval Algorithm 

The Level 2 (L2) wind speed retrieval algorithm described 
here is the algorithm implemented in the CYGNSS Sci-
ence Operations Center (SOC). It is similar to the algorithm 
described in Clarizia and Ruf (2016), although the observ-
able computation and the time-averaging approach are 
here slightly different, and some of the flters, which were 
implemented in Clarizia and Ruf (2016) to demonstrate that 
the resolution requirements are met, are not implemented 
by the SOC. The geophysical model functions (GMFs) 
used to map the observables into wind speed are based 
on empirical parameterized fts to on-orbit measurements, 
as described in Ruf and Balasubramaniam (2018). Two sets 
of GMFs are used. One is derived in fully developed seas 
(FDS) conditions using coincident matchups with European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
numerical weather prediction model wind speeds. The other 
is derived using ECMWF matchups at low wind speeds 
and matchups at high wind speeds with coincident NOAA 
P-3 hurricane hunter observations of hurricane force winds 
made by their stepped frequency microwave radiometers. 
The latter GMF is referred to as young seas limited fetch 
(YSLF). A description of the empirical GMF development is 
included in Appendix 7A. 

The basic steps for the L2 retrieval algorithm can be sum-
marized as follows: 

1. Two delay-Doppler map (DDM) “observables,” the 
DDM average (DDMA) and the leading edge slope 
(LES), are derived from L1B DDMs of the radar cross 
section (RCS) and DDMs of the effective scattering 
area, both output by the L1 calibration procedure 
described in Gleason et al. (2016, 2018). 

2. Wind speed is estimated from the L1 observable by 
inversion of the appropriate GMF (either FDS or YSLF) 
depending on the sea state conditions. This produces 
both a DDMA- and LES-based wind speed. 

3. In FDS conditions, the DDMA and LES winds are 
optimally combined using a minimum variance (MV) 
estimator. In YSLF conditions, the DDMA-based 
wind alone is used, as it has greater sensitivity at 
high wind speeds. 

4. In FDS conditions, time averaging is applied to con-
secutive samples to produce a consistent 25 km spatial 
resolution data product whenever it is appropriate to 

do so (the appropriate level of averaging depends 
on the incidence angle of the sample). In YSLF condi-
tions, no time averaging is applied in order to retain 
the highest possible horizontal spatial resolution in and 
near the inner core of tropical cyclones. 

These steps are described further in the subsequent sec-
tions. An assessment of on-orbit performance relative to 
model-based wind speed estimates is given in Appendix 7A. 

7.1. Sample Population of GMF Training 
Data 
The L1 observables used to develop the FDS GMFs were 
obtained from on-orbit measurements made by the CYGNSS 
constellation during the period January 1–December 31, 
2019. Included are measurements over the entire globe 
matched up with coincident 10 m referenced ocean surface 
wind speeds provided by the ECMWF Reanalysis 5th gener-
ation (ERA5) model forecast. ERA5 is produced using 4D-Var 
data assimilation and model forecasts of the ECMWF Inte-
grated Forecast System on a 31 km grid at 1-hour intervals. 
More details and information about ERA5 products can be 
found at https://www.ecmwf.int/en/forecasts/datasets/ 
reanalysis-datasets/era5. Bilinear interpolation in space 
and linear interpolation in time of the reported ERA5 wind 
product are used to estimate u10 at the times and locations 
of the CYGNSS specular point observations. 

The L1 observables used to develop the YSLF GMF 
were obtained from CYGNSS observations in summer/fall 
2018 during overpasses of storms in the Atlantic and Pacifc 
Oceans at and above tropical storm intensity. The measure-
ments were matched up with coincident 10 m referenced 
ocean surface wind speeds produced by the NOAA / 
National Centers for Environmental Prediction (NCEP) Hur-
ricane Weather Research and Forecasting (HWRF) model. 
For each storm overpass, all CYGNSS data within 400 km 
of the storm center are examined. The location of the storm 
center at the time of a CYGNSS observation is determined 
using the NOAA National Hurricane Center’s Best Track 
center fxes. The storm center at that time is estimated by linear 
interpolation in time of the closest Best Track fxes before and 
after the observation. A matchup is defned if the location of 
a CYGNSS sample and an HWRF grid point are within 3 km 
of each other. The HWRF wind speed for that matchup is the 
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7. Level 2 Wind Speed Retrieval Algorithm 85 

interpolation in time of the closest HWRF wind speed before 
and after the observation. However, if the two wind speeds 
differ by more than 5 m/s, that matchup is discarded from 
the population. 

The storms included in the matchup population are as 
follows: 

• Atlantic: Florence, Gordon, Helene, Isaac, Michael, 
Oscar 

• East Pacif c: Hector, John, Miriam, Norman, Olivia, 
Rosa, Sergio, Willa 

• West Pacif c: Cimaron, Jebi, Jelawat, Jongdari, 
Mangkhut, Maria, Shanshan, Soulik, Trami, Yutu 

A histogram of all the HWRF wind speeds included in 
the matchup dataset is shown in Figure 7.1. The high per-
centage of samples at lower wind speeds generally occur 
near the outer perimeter of the storms, and the highest wind 
speeds are ~ 70 m/s. 

7.2. DDM Observables: DDMA and LES 
Here we present a defnition of the observables we use for 
our retrieval algorithm, derived from the outputs of the L1B 
calibration described in Gleason et al. (2016, 2018). 

7.2.1. Defnition of Delay- Doppler Map Average 
(DDMA) 

The DDMA is the average of the L1B DDM of the normalized 
radar cross section (NRCS) over a given delay- Doppler 
range window around the specular point (Clarizia et al., 2014; 
Clarizia & Ruf, 2016). The DDMA exploits the DDM region, 
which is most sensitive to varying wind speed— namely, the 
scattered power at and around the specular point. Notably, 

Figure 7.1. Histogram of wind speeds in the matchup population 
used to train the YSLF GMF. 

the DDMA has the advantage of mitigating the effect of noise 
by averaging the power over the area around the specular 
point (SP) rather than the power value at the single SP pixel. 
An illustration of a DDM of scattered power simulated with 
the CYGNSS E2ES and a qualitative example of the area 
where the DDMA is calculated (shown as the black box) is 
shown in Figure 7.2. 

7.2.2. Defnition of Leading Edge Slope (LES) 

The LES is the slope of the leading edge of the integrated 
delay waveform (IDW), calculated over a specifc delay 
range (Clarizia et al., 2014; Clarizia & Ruf, 2016). IDWs are 
obtained as an incoherent integration of DDMs of NRCS 
along the Doppler dimension and over a range of Dop-
pler frequencies. Figure 7.2 illustrates simulated IDWs of 
integrated power for a fxed geometry and for different 
wind speeds. The corresponding IDWs of NRCS would 
only differ from these for a constant scaling factor. Figure 7.3 
highlights how the slope of the IDW’s rising edge decreases 
for increasing wind speeds. 

7.2.3. Calculation of DDMA and LES Observables 

The DDMA is computed as the sum of the L1B DDM of a 
radar cross section (RCS) over a delay- Doppler window 
of, respectively, – 0.25 chips to 0.25 chips and – 1 kHz to 
1 kHz divided by the effective scattering area over the same 
window. The selected delay-Doppler window is a 3 × 5 
matrix due to the 0.25 chip delay resolution and the 500 Hz 
Doppler resolution of the  CYGNSS DDMs. 

The sum of L1B RCS DDMs can be expressed as follows: 
3 5 

˜DDMA °˛˛d i j( , ), (7.1) 
i °1 j °1 

where d(i,j) represents the (i,j)th delay- Doppler bin of the L1B 
DDM of RCS. The motivation for the choice of such a delay- 
Doppler window is documented in Clarizia and Ruf (2016). 

The LES is calculated as the slope of IDWs obtained from 
L1A DDMs of received power using the same delay- Doppler 
(DD) window as the DDMA. The IDWs are obtained by 
summing the 5 L1A DDM columns (along the Doppler axis) 
that span the Doppler interval from – 1 kHz to 1 kHz. The 
LES of the IDW leading edge is given by 

3 3 3 

N�x y °�x �yi i  i i 
i 1̃ i 1̃ i 1̃a ˜ , (7.2)LES 

3 ˛ 3 ˝
2 

N xi 
2 ° ˙ xi ˆ� ˙� ˆ 

i 1̃ ˇ i 1̃ ˘ 
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Figure 7.2. A simulated DDM and the DDM area where the DDMA is calculated. 

Figure 7.3. Integrated delay waveforms computed from DDMs simulated using different wind speeds. 



   

 
 

 

 

 
 

 

 

 

 

 

7. Level 2 Wind Speed Retrieval Algorithm 87 

where xi is the i-th value of the delay within the [– 0.25 0.25] 
chip interval, yi is the corresponding IDW value, and N = 3 is 
the number of points of the IDW used for the LES computation. 

The effective scattering area of the 3 × 5 region that is 
used for the L1B DDMA and LES calculation is computed 
from the DDMs of ideal area and effective area for indi-
vidual DDM bins, both outputs of the L1B calibration process. 
The DDM effective area of individual bins within the selected 
DD window is not simply summed, as this would have the 
effect of accounting for the spreading of the effective area 
into neighboring bins multiple times, which would result in 
too big of an effective area. Therefore, the approximation 
we use for the effective area Aeff is 

3 5 

˙˙ i j  
2
1˙˙ 4

1˙ ˙  ̨  ( , )A ˜ A ( , )° ˛A i( , )j ° A i j  eff id 
1̃ j 1̃ i 1̃,3 1,5j˜ i 1̃,3 2,3,4˜i j 

˛ ( , )˜ A i j  ̋  ( , ) A i j  ( , )  A i j ,eff id

 (7.3) 

where A (i,j) and A (i,j) are the (i,j)th bin of the ideal and id eff 

effective scattering area DDMs, respectively. 
The fnal equations for the DDMA and LES are given by 

˜ 
DDMA ˛ DDMA 

Aeff 

° LES LES ˛ . (7.4)
Aeff 

Computation of the DDMA and LES is also explained in 
detail in Clarizia and Ruf (2016), although in that case, the 
DDMA and LES of RCS are normalized by the ideal area, 
calculated simply as the sum of the DDM ideal area bins 
within the DD window considered for the observables. 

7.3. Time Averaging 
An extra processing step that contributes to improving the 
performance of the algorithm is to apply time averaging to 
the collected data. 

The DD window chosen for the observable computation 
corresponds to a given instantaneous feld of view (IFOV), 
whose square root is shown as a function of incidence angle 
in Figure 7.4. 

The IFOV is defned here as the physical area at the inter-
section between the iso- range ellipse at 0.25 chips and the 
iso- Doppler lines at – 1 kHz and 1 kHz. Full details about 
the relationship among physical area, IFOV, and incidence 
angle are contained in Clarizia and Ruf (2016) and repeated 
in Appendix 7A. 

It is clear from Figure 7.4 that for a range of incidence 
angles lower than approximately 54.5°, the IFOV of the 
collected samples is below the spatial resolution require-
ment of 25 km. For all these cases, it is possible to average a 
number of consecutive samples in time to achieve the spatial 
resolution limit of 25 km. The maximum number of samples n 
that can be averaged can be easily calculated using some 

Figure 7.4. Square root of instantaneous feld of view (IFOV) versus incidence angle for the DD window spanning – 0.25 chip to 0.25 chip 
and – 1 kHz to 1 kHz (black dots) along with the requirements for the  CYGNSS mission (dashed magenta line). 
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simplifcations, and after a few simple calculations it turns out 
to be (Clarizia & Ruf, 2016) 

2EFOV IFOV 
n ̃  ° ˛1. (7.5)

6 IFOV 6 

For each incidence angle, it is therefore possible to know 
the exact number of samples that can be averaged if a 25 km 
requirement on the spatial resolution must be met. A precom-
puted lookup table of n as a function of the incidence angle 
is used in the time-averaging process of the algorithm, and 
this table is reported in Appendix 7B. Of course, the calcu-
lation of n uses simplifed assumptions and does not take 
into account several aspects, like the real trajectory of the 
specular point on the surface or the real shape of the IFOV, 
which is ideally assumed to be a square in Equation 7.5 but 
depends instead on the confguration of the iso-delay and 
iso-Doppler lines at the ranges selected for the computa-
tion of the observables. However, these simplifcations are 
valid enough to allow a reliable estimation of the number of 
samples to be averaged together. 

Some graphical examples of time averaging are illus-
trated in Figure 7.5, where the different SP tracks for a single 
CYGNSS observatory are shown as blue crosses, the sample 
considered for time averaging is shown in red, and the con-
secutive samples to be averaged together with the red one 
are highlighted with black circles. 

The time-averaging implementation used in the SOC 
algorithm follows a few simple rules that mostly aim at avoid-
ing geolocation ambiguities in the resulting time-averaged 
samples and can be summarized as follows: 

1. The nonvalid samples are excluded from the time aver-
aging. These are either the samples with the overall 
quality fag set to 0 (see Section 7.9) or those whose 
DDMA or LES value is not valid (–9999). 

2. The number of samples to time average before the 
central sample (i.e., preceding the central samples in 
time along the track) is always equal or higher than the 
number of samples to time average after the central 
sample. 

3. The difference between the number of samples before 
and the number of samples after cannot be greater 
than 1. 

These rules were not applied in the algorithm presented 
in Clarizia and Ruf (2016), and as a result of them, there 
are cases when the number of time-averaged samples (n) 
is less than that prescribed by the incidence angle. As a 
consequence, the amount of time-averaging applied to the 
SOC algorithm is in some cases less than that applied in 
Clarizia and Ruf (2016). 

Figure 7.5. An illustration of how the time-averaging (TA) algorithm works for four simultaneous SP tracks acquired by a single CYGNSS 
observatory. 
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7.4. Generation of Geophysical Model 
Functions 
7.4.1. Generating the FDS GMF 

The dataset used to generate the GMF is formed as the 
L1B observable, computed over a delay range of [–0.25 
0.25] chips and a Doppler range of [–1000 1000] Hz and 
acquired with high enough range corrected gain (RCG). This 
is defned as the receiver antenna gain at the specular point 
multiplied by the range losses there, as given by 

SPGRX 27RCG ˛ 10 , (7.6) 
SP SP˜R R  °2 

0 

where the range terms are in units of meters and the numeric 
(not dB) value of the receive antenna gain is used. The scale 
factor of 1027 is applied in order to produce values of order 
1–100. The RCG represents those factors affecting the 
received signal strength that are related to the measurement 
geometry and are independent of the surface scattering cross 
section. It is used to flter data according to their expected 
signal-to-noise quality. Typical ranges of low, medium, and 
high RCG for the FDS wind product are, respectively, <10, 
10–30, and >30. For the YSLF wind product, which is more 
sensitive to measurement noise, the ranges are <30, 30–150, 
and >150. 

For FDS GMF generation, we use all CYGNSS measure-
ments made in 2019 data with v3.0 Level 1 (L1) calibration 
and the following flters. 

The L1 observables are fltered prior to use as part of the 
training used to derive the empirical GMF. The flters are for 
reasons of quality control. Specifcally: 

• The Doppler coordinate of the specular point in the 
DDM is required to be greater than the lowest pos-
sible value in the map and less than the highest 
possible value. This discards cases where it is at the 
edge of the map and the computed Doppler coor-
dinate may be incorrect. In practice, this happens 
less than 0.1% of the time. 

• The delay coordinate of the specular point in the 
DDM is required to be greater than the lowest pos-
sible value in the map and less than the highest 
possible value. This discards cases where it is at the 
edge of the map and the computed delay coordi-
nate may be incorrect. In practice, this happens less 
than 0.1% of the time. 

• All NaN values of the observables are discarded. 
This eliminates samples for which noise in the cali-
bration data can produce nonphysical calibrated 
L1 data. In practice, this happens less than 0.1% of 
the time. 

• The observables are required to be nonnegative. 
This eliminates samples for which noise in the cali-
bration data can produce nonphysical calibrated 
L1 data as well as measurements that are very close 
to the measurement noise foor. In practice, this hap-
pens less than 0.1% of the time. 

• All measurements are discarded for which the 
spacecraft star tracker is not tracking due to solar 
contamination. Some reported spacecraft attitude 
data during sun outages are known to be erroneous 
(with inaccuracies greater than the error allocation 
in the L1 calibration algorithm for attitude knowl-
edge). This only occurs when the outage is espe-
cially long, but all sun outage data are fagged and 
removed as a precaution. In practice, this happens 
less than 1% of the time. 

• Measurements are discarded when the reported 
spacecraft roll angle and the commanded roll 
angle differ by more than 1° in absolute value. In 
practice, this happens less than 1% of the time. 

• All data with a CYGNSS RCG of less than 3 are 
discarded. RCG is a composite measure of receive 
signal strength that combines the receive antenna 
gain in the direction of the specular point with the 
R–2 propagation range loss from the GPS transmit-
ter to the specular point and from the specular point 
to the CYGNSS receiver. In practice, data with an 
RCG > ~1 can typically produce useful wind speed 
retrievals, but only data with a higher signal-to-
noise ratio (SNR) are used to train the empirical 
GMF. 

The GMF is two-dimensional—a function of both wind 
speed and incidence angle—and is derived separately 
for the DDMA and LES observables. The GMF maps 
the selected observable to the ERA5 “ground truth” wind 
speed. The GMFs are computed in the form of lookup 
tables (LUTs) of DDMA and LES values. The methodol-
ogy used to derive the GMF is described in detail in 
Clarizia and Ruf (2020). It was originally developed by 
Freilich and Challenor (1994) to derive an empirical altim-
eter wind speed model function. It is based on the assump-
tion that a model function M relating the wind speed w to 
the observable exists, as given by 
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w M˛ ˜ °,O (7.7) 

where O denotes the observable. It is assumed that w varies 
monotonically with O such that the inverse model function 
O = M–1(w) also exists. 

The cumulative distribution function (CDF) of the observ-
able FO(O’) can be written as follows: 

ˆ ˛1F O˜ °ˆ ˝P O O˜ ° ˝P ˜M w  Oˆ ˝O ˙ ˜ ° ˙ ° (7.8) 

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜̋ P w ˙M O˛ ˝ ˆ1 F M O ' . (7.9)˜ ˜ °° w ˜ ˜ °° 
If F O˙ ˝ , then the corresponding wind speed 
w ˛ ˝ ˜ °˛ is the wind speed for which 1˙ ˜ °˝ ˆ ˛ . The 

O ˜ ° ˛ 
M O F ww 

detailed application of this method to the case of CYGNSS is 
described in Clarizia and Ruf (2020) and summarized here 
for the case of the DDM observable. A similar approach is 
followed for the LES observable. 

1. Specifc axes are set for the wind speed, the incidence 
angle, and the DDMA. The wind speed axis is chosen 
to span the range from 0.05 m/s to 69.95 m/s with 
a 0.1 m/s step. The incidence angle axis ranges from 
1° to 70° with a step of 1°. The axis for the DDMA 
observable ranges from the minimum to the maximum 
value of the observable measured for the dataset and 
has 700 elements. We denote wy as the generic wind 
speed value of the wind speed axes and DDMA′ as 
the generic observable value of the observable axis. 

2. The wind speed CDF values Fwy ˜wy ˛°˜ are computed 
for each value of the wind speed axes. 

3. For each 1° incidence angle bin, the DDMA values 
DDMAx corresponding to wy and forming the LUT 
are found as follows: 
a. The observables CDF values FDDMA ˜DDMA˛° are 

computed for each value of the DDMA observable 
axis. 

b. The CDF values of the observables corresponding 
to the wind speed axes are denoted as β and set 
as ˛ ˙ ˆ° F ˜1 wy ˝°.wy 

c. The observables DDMAx corresponding to the wind 
speed axes are derived via linear interpolation of 
the FDDMA ˜DDMA˛° versus the DDMA axis at the 
CDF values β. 

After the CDF-matching GMF is generated, it is passed 
through a running average flter, frst with respect to incidence 
angle (averaging window ± 10°) and then with respect to 

wind speed (averaging window ± 3 m/s), to smooth out 
variations in the dependence on both incidence angle and 
wind speed. 

The fnal GMF given by (DDMAx and wy) for every inci-
dence angle bin maps wind speed as a function of both the 
observable and the incidence angle. The advantage of this 
method, compared to the one previously used in the baseline 
algorithm to derive the FDS GMF, is its simplicity, its effective-
ness, and the fact that it does not require empirical tuning 
of the GMF (Clarizia and Ruf, 2020). The current method 
is entirely based on the empirical CDFs of the observables 
used and geophysical parameters to retrieve, and it can be 
applied to any global navigation satellite system refectom-
etry (GNSS-R) observable, provided that the wind speed 
varies monotonically with the observable. 

Examples of the resulting GMFs for both DDMA and LES 
observables are shown in Figure 7.6. 

7.4.2. Generating the YSLF GMF 

The population of wind speed matchups used to generate the 
YSLF GMF is considerably smaller than that used for the FDS 
case because it is restricted to storm overpasses. In addition, 
the CDF-matching technique used in the FDS case would be 
less appropriate to use here because the statistical distribution 
of wind speeds in storms is much less repeatable. For this rea-
son, the YSLF GMF is created by binning the L1 observables 
into discrete steps in HWRF wind speed and in the incidence 
angle of the measurement geometry and averaging the L1 
samples in each bin. In addition, only the DDMA L1 observ-
able is used for retrieval of YSLF wind speeds in storm condi-
tions because the LES observable has insuffcient sensitivity to 
changes in wind speed under high wind conditions. 

The L1 observables are fltered prior to use as part of 
the training used to derive the empirical GMF for reasons 
of quality control. The flters used are the same as those in 
the FDS case except that the minimum threshold for accept-
able RCG values is raised from 3 to 30. This is done to 
raise the minimum acceptable signal-to-noise quality of the 
observations, since, in general, scattering from the ocean in 
high wind conditions tends to be weaker. 

The behavior of the empirical GMF as a function of u10 

and θinc is smoothed by allowing sequential bins in either 
dimension to overlap. In the incidence angle dimension, the 
bin center is incremented every 1° from 1 to 70°, and all 
samples are included within ± 20° of the center. In the wind 
speed dimension, the bin center is incremented every 0.1 m/s 
from 0.05 to 34.95 m/s, and all samples are included within 
a variable bin width that varies according to the population 
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Figure 7.6. FDS GMFs for the two L1 observables, σ o or DDMA (top) and LES (bottom). The GMFs are plotted as a function of wind speed 
for different incidence angles (left) and as a function of incidence angle for different wind speeds (right). 

density of samples as a function of wind speed. Specifcally, 
the bin widths used are as follows: 

• ± 0.4 m/s (u10 ≤ 1 m/s) 
• ± 0.5 m/s (1 < u10 ≤ 2 m/s) 
• ± 0.6 m/s (2 < u10 ≤ 3 m/s) 
• ± 0.7 m/s (3 < u10 ≤ 5 m/s) 
• ± 0.8 m/s (5 < u10 ≤ 9 m/s) 
• ± 1.0 m/s (9 < u10 ≤ 11 m/s) 
• ± 1.5 m/s (11 < u10 ≤ 14 m/s) 
• ± 2.0 m/s (14 < u10 

• ± 2.5 m/s (17 < u10 

• ± 3.0 m/s (25 < u10 

• ± 4.0 m/s (35 < u10 

• ± 5.0 m/s (45 < u 10 

A weighted average of all samples within twice these bin 
width ranges is performed. Samples within ± one bin width 
of the bin center are given twice as much weight as those 

 ≤ 17 m/s)
 ≤ 25 m/s)
 ≤ 35 m/s)
 ≤ 45 m/s) 
) 

between 1 × bin width and 2 × bin width from the bin center. 
This tapered weighting approach reduces the introduction of 
artifcial higher frequency components into the GMF that are 
present in the original discrete empirical samples. 

The GMF is also forced to be monotonic as a function of 
wind speed. The GMF value at 7.05 m/s is computed frst 
(since this is generally the most probable wind speed and 
so has the largest population of samples in its near vicin-
ity). GMF values are then sequentially computed in steps of 
0.1 m/s above and below this value using the averaging 
scheme described above. However, values are allowed to 
either decrease or stay the same with increasing wind speed 
and increase or stay the same with decreasing wind speed. 
This limits the introduction of nonphysical variations into the 
GMF due to undersampling of certain parts of the (wind 
speed, incidence angle) state space. In practice, this mono-
tonicity algorithm is only enforced at the highest and lowest 
wind speeds in the population, where the sampling density 
tends to be lowest. 
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After the bin-averaged GMF is generated, it is passed 
through a fnal running average smoothing flter, frst with 
respect to incidence angle (averaging window ± 10°) 
and then with respect to wind speed (averaging window 
± 3 m/s). 

Examples of the resulting YSLF GMF as a function of wind 
speed and incidence angle are shown in Figure 7.7. 

7.5. Wind Estimation Using the GMF 
For each point of the performance evaluation dataset (either 
DDMA or LES), a wind speed is estimated using the GMF. The 
estimation is done through interpolation when the observable 
value falls within the range of values spanned by the GMF 
and through extrapolation outside of such a range. The math-
ematical equation to estimate the wind through interpolation 
is given by (referring to DDMA) 

ˆDATA LUT  DATA  LUT U ˝ U ˙˛ DDMA ˆDDMA U  10 10 ˜ ˜ 10 °° 
LUT  LUT LUT LUT˛ ˝ ˜V ˆU10 ° ˜DDMA V˜ ° ˆDDMA U˜ 10 °° , (7.10)10 10 

where DDMADATA is the DDMA value within the DDMA range 
ÛDATAof the GMF, 10  is the wind estimation for DDMA value, the 

LUT LUTpair of values ̃ U ,DDMA U˜ °° are the y and x coordi-10 10 

nates of the GMF entry whose DDMA value (x coordinate) 
is immediately below DDMADATA, and the pair of values 

LUT LUT˜V10 ,DDMA V˜ 10 °°  are the y and x coordinates of the 

GMF whose DDMA value is immediately above DDMADATA . 
The mathematical expression for estimating the wind 

through extrapolation is given by 

50 

ˆEXT  i LUT  EXT DATA iLUT U10 ˝ U10 ˙˛ ˜DDMA ˆDDMA U˜ 10 °° i ˝1,n, 
(7.11) 

where the values 1 and n for the index i refer, respectively, 
ÛEXT to the smallest and largest value of the wind range, 10  is 

the wind value to estimate through extrapolation, and ˜EXT 

is the slope estimated from the 2 points of the LUT with the 
lowest wind (if i = 1) or from the 3 points of the GMF with 
the highest wind (if i = n). 

7.6. FDS Wind Speed Additional 
Processing 
7.6.1. Wind Speed MV Estimator 

The wind speed estimates from DDMA and LES can be 
combined to produce a minimum variance (MV) estima-
tor. An MV estimator exploits the degree of decorrelation 
between the errors in the individual estimates to minimize 
the root mean square (RMS) error in its wind speed esti-
mate. The advantage of such an estimator lies in the fact that 
its RMS error will always be better than or equal to the lowest 
RMS error in the retrieved wind speeds among the individual 
observables. The lower the correlation between errors in 
pairs of individual estimators, the better the RMS error per-
formance of the MV estimator. The MV estimator is built as 
a linear combination of the original estimators, as shown in 
Clarizia and Gommenginger (2013): 

m u, (7.12)uMV ˜ °

where u is the vector of individual estimates (from DDMA 
and LES) and m is the vector of coeffcients. The coeffcients 
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Figure 7.7. YSLF GMF of σ o (DDMA) versus wind speed at different incidence angles (left) and versus incidence angle at different wind 
speeds (right). 
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are obtained by requiring that the MV estimator be unbiased 
(i.e., the expected value of its retrieval is equal to the true 
quantity to be estimated) and by minimizing its variance. The 
mathematical derivation of the coeffcients for the estimator is 
illustrated in Clarizia et al. (2013) and Clarizia and Ruf (2016) 
and repeated for convenience in Appendix 7B. 

The covariance matrix could be estimated from all the 
retrieval errors; however, a further improvement in the fnal 
performances is obtained when a different covariance matrix 
of retrieval errors is estimated for different ranges of wind 
speeds. This happens because the correlation between the 
errors in the retrievals from the two observables decreases 
for noisier data characterized by higher winds with lower 
SNR. This allows the MV estimator to contribute more to the 
performance improvement of those data where the perfor-
mances are worse due to a lower SNR, so in a sense, the 
MV approach will help where it is needed most. 

A wind speed uncertainty is also associated with each 
fnal retrieved wind. The uncertainty values are stored in the 
form of an LUT indexed by wind speed interval (mean of 
DDMA and LES wind). The numerical values of this LUT are 
reported in Table 7B4 in Appendix 7B. 

7.6.2. CDF- Matching Debias 

A last adjustment is made to the MV wind speed to pro-
duce the fnal “wind_speed” data product reported in the 
L2 data fles. The MV winds are debiased so their probabil-
ity distribution, assembled using a global set of measure-
ments over several seasons, matches that of near-coincident 
wind speeds produced by the ERA5 reanalysis numerical 
weather prediction model. The debiasing algorithm consists 
of a remapping of the original MV wind speeds to their 
debiased value. Below 12– 15 m/s, the remapping forces 
agreement between CYGNSS MV and ECMWF reanalysis 
wind speed probability distributions. At higher winds, where 
sample populations are low and there is less confdence in 
the representativeness of the empirical probability distribu-
tions, the remapping tapers from full adjustment to the ERA5 
distribution (at low winds) to no adjustment of the MV winds 
(at highest retrieved winds). The exact transition wind speed 
from full to tapered adjustment is determined by the sample 
size of the wind speed population. Remapping parameters 
are derived independently for each wind speed bin used 
by the MV estimator. Example remapping parameter LUTs 
are shown in Appendix 7B. Histograms of the model and 
retrieved Climate Data Record winds for 2019 as a function 
of CYGNSS Flight Model (FM), antenna, and GPS transmit-
ter are shown in Figure 7.8. In all cases, the histograms of 

a. 

b. 

c. 

Figure 7.8. Histograms of CDR FDS winds and model (“Truth”) 
winds separated by (a)  CYGNSS FM, (b)  CYGNSS antenna, 
and (c) GPS block type. 
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CYGNSS winds match the model winds quite closely, save 
for the antenna splits. For this last case, the starboard and 
port antennas see different distributions of winds as a function 
of latitude as they look off to each side of the spacecraft, 
particularly at the extreme high and low latitude ranges of the 
observations (± 40°), where the truth/model estimates differ 
signifcantly for each antenna and the wind speed distribu-
tions shift correspondingly. This can be seen in the way that 
the truth histogram lies directly between the starboard and 
port histograms in the 7 to 15 m/s range. 

7.6.3. Sea State Dependency Correction 

GNSS-R signals are sensitive not only to the part of the sur-
face roughness spectrum that responds quickly to variations 
in the local wind but also to longer wavelength portions of 
the spectrum that are not necessarily correlated with the 
local wind (e.g., Chen-Zhang et al., 2016). The lower part 
of the spectrum will only be correlated with the local wind 
if it blows uninterrupted with almost the same intensity and 
direction for a suffcient duration of time. This high correlation 
condition corresponds to an FDS state. Additionally, swells 
(long wavelength waves that have dispersed from a distant 
weather system) can also be present in this part of the spec-
trum and can even be the dominant waves. 

This dual dependency is not represented in the GMF 
given in Section 7.4 because it is derived empirically from a 
large population of samples that is optimized by the more 
common FDS state condition. As a result, wind speed esti-
mates based solely on the GMF can be biased if the sea 
state is not in the nominal state expected for a particular local 
wind speed (either because it is not yet fully developed or 
because of the presence of swells). 

The dependency to the sea state is reduced using a cor-
recting 2D LUT with inputs (1) the debiased FDS MV winds 
and (2) the colocated reference signifcant wave height 
(SWH) given by the WW3 model, which is forced by ERA5 
reanalysis winds from the ECMWF organization. The SWH 
is a parameter that characterizes the sea state. It is obtained 
from the energy (or zeroth-order moment) of the wave spec-
trum. This allows for the correction of the winds derived with the 
GMF in scenarios in which the sea is not in its nominal state. 

The LUT is built as follows: 

1. Colocate the reference ERA5 winds and SWHs to the 
CYGNSS coordinates. 

2. Bin the colocated data in rectangular cells of 
0.1 m/s × 0.1 m. Clear cells with low number 
of observations. 

3. Compute the mean of the difference between 
the reference winds and those from CYGNSS 
(WS WS ) within each cell. ERA5 ˜ FDS 

4. Apply a 2D triangular averaging window of size 
2.5 m/s × 2.5 m across the observations within each 
cell. 

5. Apply iteratively (two times) two 1D low-pass Gauss-
ian flters of size 2.5 m/s or 2.5 m across the cells. 

The confguration parameters have been obtained after 
a trial-and-error process. 

As an example, the LUT for v3.0 FDS winds is presented 
in Figures 7.9 and 7.10. The table is not defned outside the 
black line, as the number of samples in these cells was not 
statistically signifcant to compute the mean difference. Three 
regimes can be observed: one dominated by a negative 
bias, one dominated by a positive bias, and a zero-bias line. 
In the frst case, the GMF overestimates the wind speed. This 
happens because the SWH is larger than the average one 
for that particular reference wind speed. This translates into 
a smaller normalized bistatic radar cross section (NBRCS), 
which in turn translates into a larger wind speed estimated 
by the GMF. In the second case, the opposite happens. The 
GMF underestimates the wind speed because the SWH is 
smaller than the average one, resulting in a larger NBRCS 
and therefore a smaller estimated wind speed. In the zero-
bias line, the retrieved winds by the GMF are not corrected, 
as this combination of reference winds and reference SWHs 
is the typical one. 

The corrected FDS winds are obtained by interpolating 
the uncorrected winds and the colocated SWH over the 
LUT followed by the CDF-matching debiasing technique 
described in Section 7.6.2. 

7.7. YSLF Wind Speed Additional 
Processing Signifcant Wave Height 
Correction 
In a similar manner to the FDS case described above, 
wind speeds estimated using the YSLF GMF are found to 
have a retrieval bias, relative to matchups with HWRF wind 
speeds in tropical cyclones, that is correlated with signif-
cant wave height (SWH) as determined from matchups 
with WW3. A lookup table (LUT) of retrieval bias (HWRF 
reference – CYGNSS retrieval) as a function of retrieved 
wind speed and WW3 SWH is generated and applied 
as a bias correction, similar to the FDS retrieval algorithm. 
Cuts through the YSLF LUT at selected values of SWH are 
shown in Figure 7.11. 
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Figure 7.9. Correcting LUT for v3.0 FDS winds. 

Figure 7.10. Correcting LUT cuts: left, SWH cuts; right, wind speed cuts. 

-20 

-15 

-10 

-5 

0 

5 

10 

15 

20 

YS
LF

 S
W

H
 L

U
T 

(v
3.

1)
 

swh=1m 

swh=2m 

swh=3m 

swh=4m 

swh=5m 

swh=6m 

swh=7m 

swh=8m 

swh=9m 

swh=10m 

0 10 20 30 40 50 60 

wind speed (m/s) 

Figure 7.11. Bias correction LUT for YSLF wind speed retrieval as a function of wind speed for different values of signifcant wave height. 
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7.8. Effect of Trackwise Correction on L2 
Wind Speed 
Comparisons between the trackwise corrected L2 CDR and 
reanalysis matchup wind speeds are made to illustrate the 
performance of the correction algorithm. Figure 7.12 shows 
the RMS difference between the two as a function of the 
reanalysis wind speed using all measurements from Janu-
ary 1, 2018, through December 31, 2018. Also shown is the 
RMS difference between reanalysis and Sensor Data Record 
(SDR) L2 wind speeds, which were derived from the origi-
nal, uncorrected L1 observables. The trackwise correction 
algorithm reduces the difference at all wind speeds. Note, 
in particular, that the increase in RMS difference with wind 
speed above ~12 m/s has been signifcantly reduced from 
SDR v2.1 to the CDR winds. Calibration errors such as those 
caused by the use of erroneous GPS equivalent isotropically 
radiated power (EIRP) values tend to have a larger effect at 
higher wind speeds due to the decrease in sensitivity of the 
L1 observables to wind speed (Ruf et al., 2018). 

A more important diagnostic for the behavior of the CDR 
data product than RMS difference, for purposes of climate- 
related studies, is the stability of its mean difference, or bias, 
both temporally and geographically. A time series of the 
mean difference between the CDR and reanalysis winds from 
March 18, 2017, through September 30, 2019, is shown in 
Figure 7.13. Both daily and monthly running averages of the 
mean are included. Also included is the same mean differ-
ence time series for the SDR L2 wind speed. Large shifts in 
the SDR bias are caused by known changes in GPS transmit 
power, which are associated with its “fex power” transi-
tions. This is true of both the very sharp increase in bias that 
occurred on a single day in May 2018 and the more gradual 
change in bias that occurred over a period of months in fall 
2018. Smaller changes in the bias at intermediate time scales 
may also be due to GPS fex power transitions, but this is 

less clear. Whatever their cause or causes, the changes in 
retrieval bias that are evident in the SDR wind speed data 
product have been largely removed by the trackwise cor-
rection algorithm. 

GPS fex power transitions are understood to occur epi-
sodically in time and also at some locations more so than 
others. If left uncorrected, this will introduce location- specifc 
structure to the L2 retrieval bias. The mean bias as a func-
tion of location, averaged over the full calendar year 2018, 
for both the SDR v2.1 and trackwise corrected CDR wind 
speeds is shown in Figure 7.14. Localized conditions of high 
or low bias are evident in the SDR v2.1 winds, and they 
are largely removed in the trackwise corrected CDR case. 
Notably, some geolocated structure to the bias is still present 
with CDR winds— for example, a small positive bias in the 
equatorial Pacifc near the intertropical convergence zone 
(ITCZ). This structure does not coincide with known behavior 
of the GPS fex power transitions and may be an indication of 
geophysical oceanographic features. For example, persistent 
deviations of boundary layer atmospheric stability in the ITCZ 
from its global average state would alter the sensitivity of 
ocean surface roughness there to near surface winds, thereby 
shifting the bias relative to the reanalysis winds. 

7.9. Quality Control Flags in the Retrieval 
Algorithm 
The retrieval algorithm reports a number of quality control 
fags associated with each L2 wind speed estimate. Some 
are designated as “fatal” and indicate that the reported wind 
speed either is highly nonphysical (e.g., a large negative 
value) or has an estimated uncertainty that is much higher 
than normal. Some are designated as “nonfatal” and are 
triggered by anomalous conditions that may affect the accu-
racy of the estimate. A complete list of the fags is provided 
in tabular form in Appendix 7B. 

Figure 7.12. RMS difference between reanalysis and v2.1 (left) or trackwise corrected CDR (right)  CYGNSS wind speed as a function of 
the reanalysis winds using all measurements in calendar year 2018. 
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Figure 7.13. Mean differences between reanalysis and SDR v2.1 (blue) or trackwise corrected CDR (green) beginning on the frst 
day of science operations (March 18, 2017) through September 30, 2019. Both daily and monthly running average mean values are 
shown. 

Figure 7.14. Mean difference between reanalysis and SDR v2.1 (top) or trackwise corrected CDR (bottom)  CYGNSS wind speed using 
all measurements in calendar year 2018. 

7.10. Summary and Conclusions 
Here we summarize the main characteristics of the L2 wind 
speed retrieval algorithm described here and implemented in 
the SOC: 

• generation of observables from L1B DDMs, 
computed over a fxed DD range of – 0.25 chips to 
0.25 chips and – 1 kHz to 1 kHz 

• derivation of GMFs under FDS and YSLF sea state 
conditions to map each observable value into an 

appropriate wind speed value given the predomi-
nant sea state 

• time averaging of observables (FDS only) 
• wind speed MV estimator using RCG- dependent 

coeffcients derived from the covariance matrix of 
retrieval errors (FDS only) 

It is important to also highlight some differences with 
respect to the algorithm illustrated in Clarizia and Ruf (2016). 
These main differences are as follows: 
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• The time-averaging process follows here some 
additional rules listed in Section 7.3, and as a result 
of that, the number of time-averaged observables 
is in some cases less than that in Clarizia and Ruf 
(2016). 

• No effective feld of view (EFOV) flter is applied 
here; in other words, the present algorithm does not 
exclude samples acquired with an incidence angle 
greater than 54.5°. 
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Appendix 7A: Retrieval 
Performance Assessment Using 
On- Orbit Observations 
7A.1. FDS Wind Speed Validation and 
Performance Characterization 

FDS wind speed retrieval performance is assessed by com-
paring the retrieved wind speed to near- coincident matchup 
wind speeds by ERA5. The matchup population consists of all 
samples during the period January 1, 2019– December 31, 
2019, after the removal of samples for which the fatal quality 
control fag has been set. Figure 7A1 shows log density scatter-
plots of the retrieved FDS versus reference ERA5 wind speeds 
both before (left) and after (right) the SWH- dependent bias 
correction is applied. The correction both tightens the alignment 
of samples near the 1:1 (black) line of perfect agreement and 
improves performance at higher wind speeds. 

Figure 7A2 shows the bias and root mean square dif-
ference (RMSD) of the FDS MV retrieval versus ERA5 wind 
speed, again both before (left) and after (right) the SWH- 
dependent bias correction is applied. 

The bias and RMSD are both signifcantly reduced— in 
particular, at higher wind speeds— by the SWH- dependent 
bias correction. Further information about the performance 
of the v3.1 algorithm can be found in Pascual et al. (2021). 
Complete tables of wind speed retrieval uncertainty and 
residual biases (after the SWH- dependent bias correction 
is applied) are provided in Table B3. 

7A.2. YSLF Wind Speed Validation and 
Performance Characterization 
The YSLF wind speed product is assessed in a similar man-
ner, by comparisons with near- coincident matchups with 
wind speeds produced by the NOAA HWRF model, using 
all storm overpasses during August– October 2018. A density 
scatterplot comparing YSLF winds to near- coincident winds 
modeled by HWRF and a plot of YSLF retrieval RMSD versus 
HWRF wind speed are shown in Figure 7A3. Details con-
cerning assembly of the matchup population are provided 
in Section 7.4.2. In Figure 7A3, there is considerable scat-
ter about the 1:1 line of perfect agreement between the 
retrieved and reference wind speeds. This results largely 
from the additive noise present in the Level 1 (L1) observa-
tions from which the Level 2 (L2) wind speeds are retrieved. 
The L1 noise is amplifed by the inverse slope of the GMF, 
which becomes very shallow at higher wind speeds (see 
Figure 7.7). 

The effects of noise present in individual L2 wind speed 
samples can be reduced by restricting the samples consid-
ered to be those with higher values of range corrected gain 
(RCG). In general, RCG partitions the data by received 
signal strength as determined by the receive antenna gain 
and signal propagation distance. All available samples are 
included in Figure 7A3 (i.e., RCG > 1). If only the subset 
of high signal strength samples for which RCG > 100 are 
considered, the resulting scatterplot and RMSD are shown 
in Figure 7A4. 

Figure 7A1. FDS minimum variance (MV) wind speed retrieval scatterplots before (left) and after (right) SWH- dependent bias correction 
versus ERA5 wind speed. 
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Figure 7A2. FDS MV wind speed retrieval bias and RMSD before (left) and after (right) SWH- dependent bias correction versus ERA5 
wind speed. 

Figure 7A3. L2 YSLF wind speed versus HWRF for complete 2018 matchup population. 

Figure 7A4. L2 YSLF wind speed versus HWRF for subset of 2018 matchup population with RCG > 100. 



 

  

 
 
 

  

 
 
 
 

  
 

 
 
 

  
 
 
 

 
  

 
 
 

 
 
 
 
 
 

 
   

  
 
 
 

 

 
 

  

 

   

   

  
  

 
 

  
 
 
 
 
 
 

  
 

  
 
 

  

  

Appendix 7B: Implementation of 
On-Orbit Wind Speed Retrieval 
Algorithm 
7B.1. Choice of Delay-Doppler Range for 
Observable Calculation 

A very important aspect of the computation of DDMA 
and LES is the delay and Doppler range, over which the 
observables are computed. The choice of the delay and 
Doppler ranges is a trade-off between the improvement 
in SNR that results from averaging across more of the dif-
fuse scattered signal in the glistening zone versus  the 
improvement in spatial resolution that results from only 
averaging over a limited region. The delay and Doppler 
range depends on the requirement on spatial resolution 
that one wishes to comply with. For CYGNSS, the baseline 
requirement on the spatial resolution of the retrieved winds 
is 25 km × 25 km, and therefore this is the spatial resolu-
tion we focus on. Figure 7B1 illustrates two examples of 
how, for a spatial resolution requirement of 25 × 25 km, 
the corresponding delay and Doppler range varies. Note 
that the iso-range ellipses become closer to each other 
as the delay increases; furthermore, they widen and stretch 
out with increasing incidence angles without changing 
their orientation, so the geometrical parameter that mostly 
infuences the confguration of the iso-delay lines is the inci-
dence angle. In the case of iso-Doppler lines, the spacing 
between them also increases with increasing incidence 
angle, but they are also strongly affected by the velocity 
vectors of the transmitter and, above all, of the receiver, 
which change their orientation. 

Figure  7B2 shows curves of the square root of the 
instantaneous feld of view (IFOV) versus the incidence 
angle for different delay ranges. All the delay ranges 
considered begin one delay sample before the 0 chip 
sample to improve the SNR, since the samples adjacent 
to the specular point one still contain a good amount of 

the scattered power from the specular point pixel due to 
the power spreading caused by the Woodward ambiguity 
function (WAF). The IFOV is defned here as the physi-
cal area included in the iso-range ellipse corresponding 
to a given delay. It is clear from Figure 7B2 that for a 
25 km × 25 km requirement on the spatial resolution (shown 
as black continuous line), the only suitable choice is a delay 
range from –0.25 to 0.25. 

After selecting the delay range, the Doppler range has 
to be chosen such that the iso-Doppler lines will not truncate 
some of the scattered signal within the iso-delay ellipse at 
0.25 chips but also will not lie too far from the iso-delay 
ellipse at 0.25 chips and introduce additional noise without 
adding more signal. Hence the Doppler range is then chosen 
to try to satisfy the following two conditions: 

• iso-Doppler lines are the closest possible to the iso-
delay line selected 

• iso-Doppler lines are always outside the iso-delay 
line selected 

Since the iso-delay ellipses change depending on 
geometry and iso-Doppler lines change their distance to 
one another and their orientation for different geometries 
(as shown in Figure 7B1), the Doppler range that satisfes 
the above conditions for a given iso-delay line is not unique 
and depends on the particular geometry. Furthermore, the 
Doppler range has an overall much lower infuence on 
the fnal IFOV, as is illustrated in Figure 7B3, where curves 
of square root of IFOV versus incidence angle are shown 
for a single delay range and a number of different Doppler 
ranges. It is interesting to observe that the frst case of the 
Doppler range of [–250 250] Hz is different from the others 
and noisier, since the very small Doppler range chops off 
part of the area within the iso-delay ellipse at 0.25 chips. 
Instead, small differences can be observed for the other 
cases, and mostly at lower incidence angles. This happens 
because at higher incidence angles, the iso-Doppler lines 

Figure 7B1. Iso-delay and iso-Doppler lines for an incidence angle of 16.5° (left) and of 57.6° (right). 
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Figure 7B2. Illustration of curves of square root of IFOV versus incidence angle for a variety of delay ranges. The dashed magenta line 
shows the 25 km requirement. 

Figure 7B3. Illustration of curves of square root of IFOV versus incidence angle for a fxed delay range of [–0.25 0.25] chips and different 
Doppler ranges. The dashed magenta line shows the 25 km requirement. 

stretch out more rapidly than the iso-delay lines and tend Thus, the fnal choice has been for a Doppler range of 
to fall quickly outside the 0.25 iso-delay ellipse; thus, the [–1000 1000] Hz. This choice has then been confrmed by 
IFOV for higher incidence angles is entirely determined by applying the full L2 retrieval algorithm to DDMA observables 
the delay range. Furthermore, there is no difference in the computed using the three different Doppler ranges and by 
IFOV between the [–1000 1000] Hz Doppler range and verifying that the Doppler range of [–1000 1000] is the one 
the [–1500 1500] Doppler range, suggesting that these providing the lowest RMS error among the three. 
iso-Doppler lines fall outside the 0.25 chip iso-delay lines Note that in this case, only the physical area included 
for all geometries. in the iso-delay and iso-Doppler lines is considered. 
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Several additional factors need to be taken into account 
in order to properly relate the delay and Doppler ranges 
to the spatial region. These include the following: (1) The 
spatial boundaries defned by lines of constant iso-
delay and iso-Doppler do not conform to a line of con-
stant iso-distance from the specular point. An effective 
spatial resolution—based, for example, on equal area 
coverage—needs to be defned. (2)  The Woodward 
ambiguity function and Doppler flter impulse response 
defne weighted response functions for  the contribution 
of different regions of the delay-Doppler domain to the 
measurements. These weightings should also be accounted 
for by a suitable defnition of the effective spatial resolu-
tion. (3) Multiple samples of the DDM can be averaged 
together in ground processing to reduce measurement 
noise. This will produce spatial smearing in the direction 
of motion of the specular point. Each of these factors will 
be included in a more complete defnition of the spatial 
resolution, which is currently under development. 

7B.2. Derivation of Coeffcients for 
Minimum Variance Estimator 
The coeffcients to combine wind estimates from different 
observables to form a minimum variance estimator are given 
by Clarizia et al. (2014): 

˜1
˛ N N  ˝ 

˜1 ˜1m ° ˙ c ˆ C 1 , (7B1)
˙�� i j. ˆ
ˇ i°1 j°1 ˘ 

where 1 is a vector of ones, C–1 is the inverse of the cova-
riance matrix between the individual retrieval errors, and 
˜1c  are its elements. The variance of the MV estimator isi j, 

given by 

°1
˝ N N  ˙ 

2 °1˜ ˛ ˆ
ˆ��c ˇ

ˇ 
. (7B2)MV i j. 

˘ i 1̨ j 1̨ � 

The MV estimator requires knowledge of the covariance 
matrix of the individual retrieval errors. The covariance is 
estimated empirically from the retrieval errors and can be 
factored into two component matrices as 

C ˜ SRS , (7B3) 

where S is a diagonal matrix of standard deviations of the 
retrieval errors for each observable (i.e., the square root of 
the diagonal elements of the covariance matrix) and R is the 

matrix of correlation coeffcients, whose elements are always 
between –1 and 1. 

In practice, the correlation between DDMA and LES 
retrieval errors is found to vary as a function of the SNR 
and wind speed of the measurements. For this reason, 
the covariance matrix assumed by the estimator is varied 
accordingly in a manner referred to as adaptive covari-
ance (AC). This approach consists of estimating a different 
covariance matrix, and therefore a different pair of coef-
fcients for the linear combination, for different ranges of 
the wind speed. The wind speed, taken as the mean of the 
mean of the LES and DDMA winds in 0.1 m/s bins from 
0 to 70 m/s and the estimator with the AC approach 
included becomes 

i i iu ˜ m ˛ ˜˜ ° WS WS , (7B4)u WS °˜MV low high 

where i refers to each of the wind speed intervals used to 
compute the coeffcients in the linear combination, m is the 
vector of coeffcients defned in (1), and u is the vector of 
wind speed estimates from DDMA and LES. 

The covariance matrices used to compute the best 
weighted estimate coeffcients are derived empirically 
from the population of retrievals, since neither the individual 
probability density functions (PDFs) of DDMA and LES wind 
retrieval errors nor the joint PDF between the two retrieval 
errors is available in analytical form. The bias between 
true and retrieved winds is frst computed for each observ-
able and for each wind speed interval and then removed 
so as to compute the coeffcients from unbiased DDMA 
and LES wind estimates. The coeffcients m as well as the 
bias are calculated from the training dataset (50% of data), 
where the true wind speeds are known, and then used in 
the test dataset, where the wind speeds are not known, to 
assess algorithm performance. This means that the coeffcients 
may be suboptimal when applied to the test dataset, but 
we expect the performance to be asymptotically optimal 
for an increasing number of observations, assuming that the 
statistical properties of the training dataset are the same as 
those of the test dataset. 

7B.3. Minimum Variance Coeffcients LUT 
The coeffcients used to combine the DDMA and LES wind 
estimates to obtain the fnal estimated wind are reported 
in Figure 7B4 as a function of the mean DDMA, LES-
retrieved wind speed for the Sensor Data Record (SDR) (a) 
and CDR (b) L2 products. These coeffcients are currently 
being used by the algorithm implemented in the SOC and 
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a. SDR b. CDR 

Figure 7B4. Minimum variance coeffcients for v3.1 SDR (a) and CDR (b) wind speed retrievals as a function of the mean DDMA/LES- 
retrieved wind. These were derived from matchups with ERA5 data for 2019. 

a. SDR b. CDR 

Figure 7B5. Debiasing coeffcients used in the SDR (a) and CDR (b) retrievals to match the global probability distribution of CYGNSS 
L2 fully developed seas minimum variance wind speeds to those of the ERA5 reanalysis numerical weather prediction product. For SDR 
estimates, separate maps are used for each  CYGNSS/GPS transmitter pair, with Flight Model (FM) 1 starboard antenna, SVN 63 shown 
here (others similar). The same LUT is used for all pairs for the CDR retrievals. 

to produce version 3.1 of the wind product. They have 
been derived from retrieval matchups with ERA5 data 
for 2019. 

7B.4. Debiasing LUT 
CDF- matching lookup tables (LUTs) are derived to debias 
the retrieved FDS winds relative to model- based estimates 
from ERA5 matched to the data for the 2019 retrievals. 
Separate tables are developed for the SDR and CDR 
minimum variance wind speed estimates in 0.1 m/s inter-
vals from 0 to 70 m/s. For the SDR winds, separate LUTs 
are used for each GPS/ CYGNSS transmitter/receiver 

pair, while a single LUT is used for all pairs with CDR 
winds (since the trackwise debiasing removes dependence 
on the pair). The LUT of debiasing coeffcients used by 
the FDS MV wind speed retrieval algorithm is shown in 
Figure 7B5. Coeffcients that lie along the 45° “one- to-
one” line represent wind speed ranges where the prob-
ability distributions already match well and no adjustment 
is needed. Coeffcients above and below the 1:1 line 
represent remappings where a range of retrieved wind 
speeds is compressed or expanded to more closely match 
the  likelihood of occurrence of the model wind speed 
for the same wind speed interval. 
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7B.5. Time-Averaging LUT 
The time-averaging LUT contains the number of samples to time 
average as a function of incidence angle. The incidence angle 
axis is defned as going from 0° to 89° with a step of 1°. Values 
are reported in Table 7B1 for specifc incidence angle intervals. 

7B.6. Standard Deviation of the Retrieval 
Error LUT 
The standard deviation (uncertainty) and mean (bias) error 
in the retrieved wind associated with each GPS block type, 
RCG, incidence angle, and wind speed interval are reported 
in Table 7B2 for FDS winds and Table 7B3 for YSLF winds. 
The values are empirically derived from statistical comparisons 
between retrieved winds and matchup ground truth winds 
provided by ERA5 (for the FDS MV retrievals) and by HWRF 
(for the YSLF retrievals at the higher wind speed intervals). 

Table 7B1. Number of Samples to Time Average as a 
Function of Incidence Angle 

Number of 
samples to time 

average Incidence angle interval (°) 

5 0° < θ ≤ 17° 

4 17° < θ ≤ 31° 

3 31° < θ ≤ 41° 

2 41° < θ ≤ 48° 

1 θ > 48° 

Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error 

Uncertainty table—block IIA (SVN = 34) 

Incidence angle ≤ 10° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 2.0 2.0 2.0 

15 < uMV ≤ 20 m/s 2.5 2.5 2.5 

20 < uMV ≤ 25 m/s 3.5 3.5 3.5 

25 m/s < uMV 5.0 5.0 5.0 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 3.0 3.0 3.0 

25 m/s < uMV 5.0 5.0 5.0 

60°< incidence angle 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 3.0 3.0 3.0 

25 m/s < uMV 5.0 5.0 5.0 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Uncertainty table—block IIR-legacy (SVN = 41, 43, 44, 45, 46, 51, 54, 56) 

Incidence angle ≤ 10° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 2.0 2.0 2.0 

15 < uMV ≤ 20 m/s 2.5 2.5 2.5 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 4.0 4.0 4.0 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 2.0 2.0 2.0 

15 < uMV ≤ 20 m/s 2.5 2.5 2.5 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 4.0 4.0 4.0 

60° < incidence angle 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 2.0 2.0 2.0 

15 < uMV ≤ 20 m/s 3.0 3.0 3.0 

20 < uMV ≤ 25 m/s 3.5 3.5 3.5 

25 m/s < uMV 3.5 3.5 3.5 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Uncertainty table—block IIR improved (SVN = 47, 59, 60, 61) 

Incidence angle ≤ 10° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 3.0 3.0 3.0 

25 m/s < uMV 3.5 3.5 3.5 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 3.0 3.0 3.0 

25 m/s < uMV 3.0 3.0 3.0 

60° < incidence angle 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 3.5 3.5 3.5 

25 m/s < uMV 6.0 4.5 4.5 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Uncertainty table—block IIR-M (SVN = 48, 50, 52, 53, 55, 57, 58) 

Incidence angle ≤ 10° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 4.5 4.5 4.5 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 3.5 3.5 3.5 

60° < incidence angle 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 4.0 4.0 4.0 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Uncertainty table—block IIF (SVN = 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73) 

Incidence angle ≤ 10° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 3.0 3.0 3.0 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.0 2.0 2.0 

20 < uMV ≤ 25 m/s 2.5 2.5 2.5 

25 m/s < uMV 4.0 4.0 4.0 

60° < incidence angle 

Minimum variance wind speed range RCG ≤ 10 10 < RCG ≤ 60 60 < RCG 

0 < uMV ≤ 5 m/s 1.5 1.5 1.5 

5 < uMV ≤ 10 m/s 1.5 1.5 1.5 

10 < uMV ≤ 15 m/s 1.5 1.5 1.5 

15 < uMV ≤ 20 m/s 2.5 2.5 2.5 

20 < uMV ≤ 25 m/s 3.0 3.0 3.0 

25 m/s < uMV 4.5 4.5 4.5 



  

 

 

 

 

   

   

   

   

 

 

   

   

   

   

 

   

   

   

   

  

 

110 CCGGSS  AGDBOOK 

Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Bias table—block IIA (SVN = 34) 

Incidence angle ≤ 10° 

Minimum variance wind speed range Roll = –10 ° Roll = 0 ° Roll = +10 ° 

0 < uMV ≤ 5 m/s 0.3 0.3 –0.6 

5 < uMV ≤ 10 m/s 0.0 0.1 –0.8 

10 < uMV ≤ 15 m/s –1.1 –0.8 –1.7 

15 < uMV ≤ 20 m/s –3.3 –1.5 –2.4 

20 < uMV ≤ 25 m/s –4.2 –2.4 –3.3 

25 m/s < uMV –5.0 –4.8 –5.0 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < uMV ≤ 5 m/s 0.7 0.5 1.0 

5 < uMV ≤ 10 m/s 0.3 0.1 –0.3 

10 < uMV ≤ 15 m/s –0.9 –0.9 –1.2 

15 < uMV ≤ 20 m/s –1.6 –1.7 –2.0 

20 < uMV ≤ 25 m/s –2.3 –2.4 –3.7 

25 m/s < uMV –3.7 –3.8 –4.2 

60° < incidence angle 

Minimum variance wind speed range Roll = –10 ° Roll = 0 ° Roll = +10 ° 

0 < uMV ≤ 5 m/s 0.5 0.3 0.9 

5 < uMV ≤ 10 m/s –0.1 –0.3 –0.8 

10 < uMV ≤ 15 m/s –1.0 –1.2 –2.2 

15 < uMV ≤ 20 m/s –2.3 –2.5 –3.5 

20 < uMV ≤ 25 m/s –4.7 –4.9 –5.0 

25 m/s < uMV –5.0 5.0 –5.0 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Bias table—block IIR-legacy (SVN = 41, 43, 44, 45, 46, 51, 54, 56) 

Incidence angle ≤ 10° 

Minimum variance wind speed range Roll = –10 ° Roll = 0 ° Roll = +10 ° 

0 < uMV ≤ 5 m/s 0.3 0.7 0.3 

5 < uMV ≤ 10 m/s 0.2 0.6 0.0 

10 < uMV ≤ 15 m/s –1.0 –0.9 –0.8 

15 < uMV ≤ 20 m/s –1.4 –1.6 –1.5 

20 < uMV ≤ 25 m/s –2.0 –2.2 –2.1 

25 m/s < uMV –2.6 –2.8 –2.7 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < uMV ≤ 5 m/s 0.8 0.5 0.5 

5 < uMV ≤ 10 m/s 0.2 0.1 –0.2 

10 < uMV ≤ 15 m/s –1.2 –1.0 –1.1 

15 < uMV ≤ 20 m/s –1.6 –1.8 –2.9 

20 < uMV ≤ 25 m/s –1.8 –1.8 –2.9 

25 m/s < uMV –3.4 –3.4 –4.5 

60° < incidence angle 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < uMV ≤ 5 m/s 0.6 0.4 0.8 

5 < uMV ≤ 10 m/s 0.2 –0.2 –0.3 

10 < uMV ≤ 15 m/s –1.6 –1.2 –1.5 

15 < uMV ≤ 20 m/s –1.7 –1.9 –2.2 

20 < uMV ≤ 25 m/s –0.3 –0.5 –0.8 

25 m/s < uMV 0.1 –0.1 –0.4 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Bias table—block IIR improved (SVN = 47, 59, 60, 61) 

Incidence angle ≤ 10° 

Minimum variance wind speed range Roll = –10 ° Roll = 0 ° Roll = +10 ° 

0 < uMV ≤ 5 m/s 0.2 0.3 0.3 

5 < uMV ≤ 10 m/s –0.3 –0.1 –0.4 

10 < uMV ≤ 15 m/s –0.6 –1.1 –0.7 

15 < uMV ≤ 20 m/s –1.8 –2.3 –1.9 

20 < uMV ≤ 25 m/s –2.7 –3.2 –2.8 

25 m/s < uMV –3.6 –4.1 –3.7 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < uMV ≤ 5 m/s 0.8 0.5 0.4 

5 < uMV ≤ 10 m/s 0.1 0.1 –0.4 

10 < uMV ≤ 15 m/s –1.1 –1.0 –1.0 

15 < uMV ≤ 20 m/s –1.6 –1.8 –1.9 

20 < uMV ≤ 25 m/s –2.3 –2.5 –2.8 

25 m/s < uMV –3.0 –3.2 –3.5 

60 ° < incidence angle 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < uMV ≤ 5 m/s 0.8 0.4 0.6 

5 < uMV ≤ 10 m/s 0.1 –0.1 –0.4 

10 < uMV ≤ 15 m/s –1.1 –1.2 –1.2 

15 < uMV ≤ 20 m/s –2.0 –2.6 –2.6 

20 < uMV ≤ 25 m/s –2.4 –3.0 –3.0 

25 m/s < uMV –2.8 –3.4 –3.4 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Bias table—block IIR-M (SVN = 48, 50, 52, 53, 55, 57, 58) 

Incidence angle ≤ 10° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < u  ≤ 5 m/sMV 0.5 0.3 0.4 

5 < u  ≤ 10 m/s MV 0.4 –0.1 0.0 

10 < u  ≤ 15 m/s MV –0.7 –0.8 –0.9 

15 < u  ≤ 20 m/sMV –2.1 –2.2 –2.3 

20 < u  ≤ 25 m/s MV –2.2 –2.3 –2.4 

25 m/s < uMV –2.3 –2.4 –2.5 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < u  ≤ 5 m/sMV 0.8 0.5 0.4 

5 < u  ≤ 10 m/s MV 0.1 –0.1 –0.3 

10 < u  ≤ 15 m/s MV –1.1 –1.2 –1.2 

15 < u  ≤ 20 m/sMV –1.3 –1.5 –1.5 

20 < u  ≤ 25 m/s MV –1.7 –1.9 –1.9 

25 m/s < uMV –1.8 –2.0 –2.0 

60° < incidence angle 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < u  ≤ 5 m/sMV 0.7 0.5 0.7 

5 < u  ≤ 10 m/s MV 0.2 –0.1 –0.1 

10 < u  ≤ 15 m/s MV –1.0 –1.1 –1.3 

15 < u  ≤ 20 m/sMV –1.4 –2.0 –1.3 

20 < u  ≤ 25 m/s MV –1.5 –2.1 –1.4 

25 m/s < uMV –1.6 –2.2 –1.5 
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Table 7B2. Uncertainty and Bias of FDS MV Wind Speed Retrieval Error (continued) 
Bias table—block IIF (SVN = 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73) 

Incidence angle ≤ 10° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < u  ≤ 5 m/sMV 0.5 0.4 0.4 

5 < u  ≤ 10 m/s MV 0.1 0.0 0.0 

10 < u  ≤ 15 m/s MV –1.2 –1.2 –0.9 

15 < u  ≤ 20 m/sMV –2.2 –2.2 –1.9 

20 < u  ≤ 25 m/s MV –3.2 –3.2 –2.9 

25 m/s < uMV –4.2 –4.2 –3.9 

Incidence 10° < incidence angle ≤ 60° 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < u  ≤ 5 m/sMV 0.8 0.5 0.4 

5 < u  ≤ 10 m/s MV 0.1 0.0 –0.3 

10 < u  ≤ 15 m/s MV –1.2 –1.1 –1.2 

15 < u  ≤ 20 m/sMV –1.7 –2.0 –2.7 

20 < u  ≤ 25 m/s MV –1.8 –2.1 –2.8 

25 m/s < uMV –4.1 –4.2 –4.9 

60° < incidence angle 

Minimum variance wind speed range Roll = –10° Roll = 0° Roll = +10° 

0 < u  ≤ 5 m/sMV 0.8 0.5 0.9 

5 < u  ≤ 10 m/s MV 0.0 –0.1 –0.2 

10 < u  ≤ 15 m/s MV –1.3 –1.2 –1.4 

15 < u  ≤ 20 m/sMV –2.4 –2.3 –3.3 

20 < u  ≤ 25 m/s MV –2.5 –2.4 –4.7 

25 m/s < uMV –4.5 –4.4 –5.0 

Table 7B3. Uncertainty of YSLF Wind Speed Retrieval Error 

YSLF wind speed range RCG ≤ 10 10 < RCG ≤ 50 50 < RCG ≤ 100 100 < RCG ≤ 150 150 < RCG 

0 < u ≤ 20 m/s 3.0 3.0 3.0 2.0 2.0 

20 < u ≤ 30 m/s 7.0 6.0 5.0 4.0 3.0 

30 < u ≤ 40 m/s 10.0 8.0 7.0 5.0 4.0 

40 < u ≤ 50 m/s 15.0 12.0 9.0 7.0 5.0 

50 m/s < u 20.0 15.0 11.0 8.0 6.0 
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7B.7. L2 Data Dictionary 
Table 7B4 lists all the variables in the L2 wind speed netCDF fles. 

Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

Global values 

time_coverage_ <none> fle attribute, <none> <none> sample_time of the frst sample in the fle in ISO-
start string 8601 form 

time_coverage_ <none> fle attribute, <none> <none> sample_time of the last sample in the fle in ISO-
end string 8601 form 

time_coverage_ <none> fle attribute, <none> <none> The time interval between test_coverage_start and 
duration string test_coverage_end in ISO-1806 form 

time_coverage_ <none> fle attribute, <none> <none> The nominal time interval between samples in 
resolution string ISO-1806 form 

ddm_source Level 0 data byte <none> <none> The source of the Level 0 DDM raw counts and 
source metadata utilized to derive wind_speed. 

0 = E2ES (CYGNSS end-to-end simulator) 
1 = GPS signal simulator 
2 = CYGNSS spacecraft 
3 = Source unknown 

nbrcs_les_sel_ <none> fle attribute, <none> <none> The GMF NBRCS and LES selection lookup table 
lookup_tables_ string version number 
version 

time_averaging_ <none> fle attribute, <none> <none> The GMF time-averaging lookup table version 
lookup_tables_ string number 
version 

nbrcs_wind_ <none> fle attribute, <none> <none> The GMF NBRCS to wind speed lookup table 
lookup_tables_ string version number 
version 

les_wind_lookup_ <none> fle attribute, <none> <none> The GMF LES to wind speed lookup table version 
tables_version string number 

covariance_ <none> fle attribute, <none> <none> The GMF minimum covariance lookup table 
lookup_tables_ string version number 
version 

standard_ <none> fle attribute, <none> <none> The GMF standard deviation lookup table version 
deviation_lookup_ string number 
table_version 

l2_algorithm_ <none> fle attribute, <none> <none> L2 processing algorithm version number 
version string 

source <none> fle attribute, <none> <none> L1 netCDF source fle names 
string 

(continued) 
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Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

Per-sample values 

spacecraft_id CCSDS short 1 sample The CCSDS spacecraft identifer: 
spacecraft 0xF7 (247): CYGNSS 1 
identifer 0xF9 (249): CYGNSS 2 

0x2B (43): CYGNSS 3 
0x2C (44): CYGNSS 4 
0x2F (47): CYGNSS 5 
0x36 (54): CYGNSS 6 
0x37 (55): CYGNSS 7 
0x49 (73): CYGNSS 8 
0x00 (0): E2ES 
0x0E (14): engineering model 
0x0D (15): default 
0xFF (255): unknown 

spacecraft_num CYGNSS byte 1 sample The CYGNSS spacecraft number: Ranges from 
spacecraft 1 through 8 and 99; 1 through 8 are on-orbit 
number spacecraft; 99 is the CYGNSS end-to-end 

simulator 

prn_code GPS PRN byte 1 sample The PRN code of the GPS signal associated with 
code the DDMs utilized to derive wind_speed. Ranges 

from 0 to 32; 0 = refectometry channel idle; 1 to 
32 represents PRN code 

sv_num GPS space short 1 sample The GPS unique space vehicle number that 
vehicle transmitted prn_code 
number 

antenna Receive byte <none> sample The CYGNSS nadir antenna that received the 
antenna refected GPS signal associated with the DDMs 

utilized to derive wind_speed 
0 = none 
1 = zenith (never used) 
2 = nadir_starboard 
3 = nadir_port 

sample_time Sample time double seconds sample The mean of ddm_timestamp_utc of the DDMs 
since time_ that were utilized to derive wind_speed. 
coverage_ Note that the DDM sampling period is not 
start synchronized with the UTC change of second, so 

sample_time can occur at any time relative to the 
UTC change of second. 

lat Latitude foat degrees_ sample The mean of the specular point latitudes of the 
north DDMs that were utilized to derive wind_speed, 

ºN. 

lon Longitude foat degrees_ sample The mean of the specular point longitudes of the 
east DDMs that were utilized to derive wind_speed, 

ºE. 

sc_lat Subsatellite foat degrees_ sample The mean of the subsatellite point latitudes of the 
point latitude north DDMs that were utilized to derive wind_speed, 

ºN. 

(continued) 
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Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

sc_lon Subsatellite 
point 
longitude 

foat degrees_ 
east 

sample The mean of the subsatellite point longitudes of the 
DDMs that were utilized to derive wind_speed, 
ºE. 

sc_alt Spacecraft 
altitude 

int meter sample The mean of the satellite altitudes above the 
WGS-84 ellipsoid of the DDMs that were utilized 
to derive wind_speed, meters. 

wind_speed Retrieved 
wind speed 
using 
minimum 
variance 
estimator 
applied 
to fully 
developed 

foat m s–1 sample The average surface wind speed of the 25 × 
25 km cell centered on latitude and longitude 
derived from both the NBRCS and the LES 
observables using the fully developed seas 
geophysical model function, m/s. Multiple DDMs 
are utilized to derive wind_speed. The number of 
utilized DDMs ranges from 1 to 5. 

seas 
retrievals 
from 
NBRCS and 
LES 

fds_nbrcs_wind_ 
speed 

Fully 
developed 
sea retrieval 
of wind 
speed from 
NBRCS 

foat m s–1 sample The average surface wind speed of the 25 × 
25 km cell centered on latitude and longitude 
derived only from the NBRCS observable using 
the fully developed seas geophysical model 
function, m/s. Multiple DDMs are utilized to 
derive fds_nbrcs_wind_speed. The number of 
DDMs ranges from 1 to 5. 

fds_les_wind_ 
speed 

Fully 
developed 
seas 
retrieval of 
wind speed 
from LES 

foat m s–1 sample The average surface wind speed of the 25 × 
25 km cell centered on latitude and longitude 
derived only from the LES observable using 
the fully developed seas geophysical model 
function, m/s. Multiple DDMs are utilized to 
derive fds_les_wind_speed. The number of DDMs 
ranges from 1 to 5. 

wind_speed_ 
uncertainty 

Uncertainty 
in MV FDS 
wind speed 

foat m s–1 sample Standard deviation of the additive wind speed 
error in the minimum variance fully developed 
seas wind speed retrieval (dependent on the RCG 
of the specular point location, the block type of 
the GPS satellite, and the wind speed), in m/s. 

yslf_nbrcs_wind_ 
speed 

Young 
seas / 
limited fetch 
retrieval 
of wind 
speed from 
NBRCS 

foat m s–1 sample The surface wind speed centered on latitude 
and longitude derived only from the NBRCS 
observable using the young seas / limited fetch 
geophysical model function, m/s. Multiple DDMs 
are utilized to derive wind_speed. The number of 
utilized DDMs ranges from 1 to 5. 

(continued) 
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Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

yslf_les_wind_ Young foat m s–1 sample The surface wind speed centered on latitude and 
speed seas / longitude derived only from the LES observable 

limited fetch using the young seas / limited fetch geophysical 
retrieval of model function, m/s. Multiple DDMs are utilized 
wind speed to derive wind_speed. The number of utilized 
from LES DDMs ranges from 1 to 5. 

yslf_nbrcs_wind_ Uncertainty foat m s–1 sample Standard deviation of the additive wind speed 
speed_uncertainty in NBRCS error in yslf_nbrcs_wind_speed (dependent on 

YSLF wind the RCG of the specular point location, the block 
speed type of the GPS satellite, and the wind speed), in 

m/s. 

yslf_les_wind_ Uncertainty foat m s–1 sample Standard deviation of the additive wind speed 
speed_uncertainty in LES YSLF error in yslf_les_wind_speed (dependent on the 

wind speed RCG of the specular point location, the block type 
of the GPS satellite, and the wind speed), in m/s. 

mean_square_ Mean foat 1 sample The average MSS of the 25 × 25 km cell centered 
slope square on latitude and longitude, unitless. 

slope (MSS) 

mean_square_ Mean foat 1 sample The uncertainty of mean_square_slope, unitless. 
slope_uncertainty square 

slope 
uncertainty 

incidence_angle Incidence foat degree sample The mean of the incidence angles of the specular 
angle points of the DDMs that were utilized to derive 

wind_speed, degrees. 

azimuth_angle Azimuth foat degree sample The mean of the orbit frame azimuth angles of the 
angle specular points of the DDMs that were utilized to 

derive wind_speed, degrees. 

nbrcs_mean NBRCS foat 1 sample The mean of the DDM NBRCS values that were 
mean utilized to derive wind_speed, unitless. 

les_mean LES mean foat 1 sample The mean of the DDM LES values that were 
utilized to derive wind_speed, unitless. 

range_corr_gain Range foat 1e-27 dBi sample The mean of the RCGs of the DDMs that were 
corrected meter-4 utilized to produce wind_speed. Individual 
gain RCGs are equal to the receive antenna gain in 

the direction of the specular point multiplied by 
1e27 divided by the square of the receiver to 
the specular point range and the square of the 
transmitter to specular point range. Units: 1e27 
*dBi * m^-4. 

fresnel_coeff Fresnel foat 1 sample The square of the left-hand circularly polarized 
power Fresnel electromagnetic voltage refection 
refection coeffcient at 1575 MHz for a smooth ocean 
coeffcient surface at latitude, longitude. See University 

of Michigan (UM) document 148-0361 for 
a description of the calculation of the Fresnel 
coeffcient, unitless. 

(continued) 
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Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

num_ddms_utilized Number byte 1 sample The number of DDMs averaged together to 
of DDM produce wind_speed. The number of DDMs 
utilized utilized depends on the incidence angle. Ranges 

from 1 to 5. 

sample_fags General short <none> sample Set of fags indicating general conditions for the 
status fags sample, set to 1 if condition is true. Flag bit masks: 
for the 1 = low_quality_gps_ant_knowledge. The 
sample directional gain pattern of the GPS transmit 

antenna, and hence the value of its gain in the 
direction of the specular point, is less well known 
for block type IIF GPS satellites. This fag indicates 
that L1 calibration was based on a GPS antenna 
gain value with a higher-than-normal uncertainty. 
The impact on retrieved wind speed values is 
typically less than 1 m/s at low to moderate wind 
speeds, so this is considered a nonfatal fag. The 
increase in uncertainty at higher wind speeds is 
refected in the uncertainty data felds. 

fds_sample_fags Sample short <none> sample Set of FDS status fags, set to 1 if condition is true. 
status fags Flag bit masks: 
for fully 1 = fatal_composite_wind_speed_fag, logical 
developed OR of fatal FDS fags (fatal_neg_wind_speed OR 
seas wind fatal_high_wind_speed OR fatal_retrieval_ambiguity 
speed OR fatal_low_range_corr_gain) 
retrieval 2 = non_fatal_neg_wind_speed_fag, –5 < 

wind_speed < 0 m/s 
4 = non_fatal_neg_fds_nbrcs_wind_speed, –5 < 
fds_nbrcs_wind_speed < 0 m/s 
8 = non_fatal_neg_fds_les_wind_speed, –5 < 
fds_les_wind_speed < 0 m/s 
16 = fatal_neg_wind_speed, wind_speed <= 
–5 m/s 
32 = fatal_neg_fds_nbrcs_wind_speed, 
fds_nbrcs_wind_speed <=-5 m/s 

64 = fatal_neg_fds_les_wind_speed, 
fds_les_wind_speed <= –5 m/s 
128 = fatal_high_wind_speed, 
fatal_high_fds_nbrcs_wind_speed and 
fatal_high_fds_les_wind_speed are both 1 
256 = fatal_high_fds_nbrcs_wind_speed, 
nbrcs_mean corresponds to a wind speed > 
maximum FDS NBRCS lookup table wind speed 
at incidence_angle 
512 = fatal_high_fds_les_wind_speed, les_mean 
corresponds to a wind speed > maximum FDS 
LES lookup table wind speed at incidence_angle 

(continued) 



  

 

  

 

 

 

120 CCGGSS  AGDBOOK 

Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

1024 = non_fatal_ascending, satellite is on the 
ascending node of the orbit (subsatellite point 
latitude is increasing) 
2048 = fatal_retrieval_ambiguity, wind_speed 
was derived from both fds_nbrcs_wind_speed 
and fds_les_wind_speed and the absolute value 
of the difference between fds_nbrcs_wind_speed 
and fds_les_wind_speed is > 10.0 m/s 
4096 = non_fatal_single_observable, 
wind_speed was derived from a single 
observable, either fds_nbrcs_wind_speed or 
fds_les_wind_speed but not both 
8192 = fatal_low_range_corr_gain, 
range_corr_gain < 1 
16384 = non_fatal_low_quality_gps_ant_ 
knowledge. The directional gain pattern of the 
GPS transmit antenna, and hence the value of 
its gain in the direction of the specular point, is 
less well known for block type IIF GPS satellites. 
This fag indicates that L1 calibration was 
based on a GPS antenna gain value with a 
higher-than-normal uncertainty. The impact on 
retrieved wind speed values is typically less than 
1 m/s at low to moderate wind speeds, so this 
is considered a nonfatal fag. The increase in 
uncertainty at higher wind speeds is refected in 
the wind_speed_uncertainty data feld. 

yslf_sample_fags Sample short <none> sample Set of YSLF status fags, set to 1 if condition is true. 
status fags Flag bit masks: 
for young 1 = fatal_composite_yslf_wind_speed, 
seas / logical OR of fatal YSLF fags 
limited fetch (fatal_neg_yslf_wind_speed OR fatal_high_yslf_ 
wind speed wind_speed OR fatal_yslf_retrieval_ambiguity 
retrieval OR fatal_low_range_corr_gain) 

2 = spare_3, always zero 
4 = spare_4, always zero 
8 = fatal_neg_yslf_wind_speed, 
non_fatal_neg_yslf_nbrcs_wind_speed and 
non_fatal_neg_yslf_les_wind_speed are both 1 
16 = non_fatal_neg_yslf_nbrcs_wind_speed, 
yslf_nbrcs_wind_speed <= –5 m/s 
32 = non_fatal_neg_yslf_les_wind_speed, 
yslf_les_wind_speed <=-5 m/s 

(continued) 
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Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

CF 
conventions netCDF 

Name Long name netCDF type units dimensions Comment 

64 = fatal_yslf_retrieval_ambiguity, 
the absolute value of the difference 
between yslf_nbrcs_wind_speed and 
1.43*yslf_les_wind_speed is > 12.0 m/s 
128 = fatal_high_yslf_wind_speed, either 
fatal_high_yslf_nbrcs_wind_speed or 
fatal_high_yslf_les_wind_speed is one (or both 
are one) 
256 = fatal_high_yslf_nbrcs_wind_speed, 
nbrcs_mean corresponds to a YSLF wind speed 
≥ 99.9 m/s 
512 = fatal_high_yslf_les_wind_speed, les_mean 
corresponds to a YSLF wind speed ≥ 99.9 m/s 

1024 = non_fatal_ascending, satellite is on the 
ascending node of the orbit (subsatellite point 
latitude is increasing) 
2048 = spare_6, always zero 
4096 = spare_7, always zero 
8192 = fatal_low_yslf_range_corr_gain, range 
corrected gain of the DDM used for YSLF winds 
is < 1 
16384 = non_fatal_low_quality_gps_ant_ 
knowledge. The directional gain pattern of the 
GPS transmit antenna, and hence the value of 
its gain in the direction of the specular point, 
is less well known for block IIF GPS satellites. 
This fag indicates that L1 calibration was 
based on a GPS antenna gain value with a 
higher-than-normal uncertainty. The impact on 
retrieved wind speed values is typically less than 
1 m/s at low to moderate wind speeds, so this 
is considered a nonfatal fag. The increase in 
uncertainty at higher wind speeds is refected 
in the yslf_nbrcs_wind_speed_uncertainty and 
yslf_les_wind_speed_uncertainty data felds. 

(continued) 
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Table 7B4. List of Data Fields Contained in the L2 Wind Retrieval Data Files (continued) 

Name Long name netCDF type 

CF 
conventions 
units 

netCDF 
dimensions Comment 

sum_neg_brcs_ 
values_used_for_ 
nbrcs_fags 

Sum of 
negative 
bistatic 
radar cross 
section 
(BRCS) 
values used 
for NBRCS 
fags 

byte 1 sample The number of DDMs utilized to produce 
wind_speed that used at least one negative BRCS 
value to calculate NBRCS. Ranges from 1 to 5. 

Per-DDM values 

Wind retrievals are produced 
utilizing from one to fve DDMs. 
The values below are fve 
element arrays, which contain 
per-DDM values. The DDMs that 
were utilized for wind retrieval 
are indicated by the ddm_obs_ 
utilized_fag array. Unutilized 
DDMs are assigned fll values. 

ddm_obs_ DDM- byte 1 sample, A fve-element array, one element per 
utilized_fag utilized fags ddm DDM. Each element is a fag set to 1 if the 

corresponding DDM was utilized to produce 
wind_speed. 

ddm_sample_ Level 1 int 1 sample, A fve-element array, one per DDM. 
index netCDF ddm Contains the L1 netCDF sample index of the 

sample corresponding DDM. Can be utilized together 
indices with ddm_channel, spacecraft_num and “source” 

to look up the corresponding L1 DDM data and 
metadata. 

ddm_channel Level 1 byte 1 sample, A fve-element array, one per DDM. Contains 
DDM ddm the L1 netCDF refectometry channel of the 
refectometry corresponding DDM. Can be utilized together 
channels with the ddm_sample_index, spacecraft_num and 

“source” to look up the corresponding L1 DDM 
data and metadata. 

ddm_les DDM foat 1 sample, A fve-element array, one element per DDM. 
leading ddm Contains the corresponding DDM leading edge 
edge slope slope value, unitless. 
observables 

ddm_nbrcs DDM foat 1 sample, A fve-element array, one element per DDM. 
normalized ddm Contains the corresponding DDM normalized 
bistatic bistatic radar cross section value, unitless. 
radar cross 
section 
observables 

Key: CCSDS, Consultative Committee for Space Data Systems; CF, netCDF Climate and Forecast Metadata Convention; PRN, 
pseudorandom noise; UTC, Coordinated Universal Time. 



 

 

 

 
 

  
 

 
 

 
  

   

 
 

 

 

 

 

 

 

 

  

  
  

  

  
 
 

 

  
 

 

 

 
   

  

 
 

 

 

  
 

 
 

 
   

8. Level 2 Ocean Surface Heat Flux Product 

8.1. Summary 

The ocean surface heat fux dataset is provided as a ser-
vice to the oceanographic and meteorological research 
communities on behalf of a NASA Research Opportuni-
ties in Space and Earth Sciences (ROSES)–funded project 
within  the CYGNSS Science Team in direct collabora-
tion with the CYGNSS mission. This document details the 
CYGNSS Level 2 Science Data Record Version 2.0 data-
set, which provides data on CYGNSS specular points on 
a nominal 25 km diameter footprint in daily netCDF-4 fles. 
Development and distribution of this dataset are made pos-
sible through funding provided by NASA. 

8.2. Processing Methodology 
The Coupled Ocean-Atmosphere Response Experiment 
(COARE) algorithm (Edson et al., 2013) is a widely used 
parameterization to estimate latent and sensible fuxes and 
their respective transfer coeffcients. The COARE bulk fux 
algorithm is based on the Monin-Obukhov similarity theory 
(MOST; Fairall et al., 1996, 1997) and has been widely 
used to estimate surface heat fuxes over the open oceans. 
While COARE’s initial intentions were for low to moderate 
wind speeds, the version used for this product, COARE 3.5, 
has been verifed with direct in situ fux measurements for 
wind speeds up to 25 m/s. 

COARE 3.5 utilizes bulk aerodynamic formulas in order 
to estimate latent (LHF) and sensible heat fuxes (SHF), which 
are as follows: 

LHF  ˝ ˜̨  L C U˜q ˙ q ° (8.1)a v DE s a 

SHF ˝˛ c C U˜T T˙ ° (8.2)˜ a p DH s a 

Here, ρ a is the air density at the surface [kg m–3]; Lv is the 
latent heat of condensation (2.5 × 106 J kg–1); and cp is spe-
cifc heat at constant pressure (1004 J K–1 kg–1). CDE and 

 are, respectively, the exchange coeffcients of moisture CDH 

and sensible heat [unitless]; U is the surface winds [m s–1], 
Ts and qs are temperature [K] and specifc humidity [kg kg–1], 
respectively, at the surface, while Ta and qa are the same but 
at 10 m above the surface. 

Since CYGNSS does not provide temperature, humidity, 
surface pressure, or density, we obtain these values from the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis, Version 5 (ERA5; Hersbach et al., 
2020). ERA5 uses data assimilation to combine all available 
in situ and satellite observation data with an initial estimate 
of the atmospheric state provided by a global atmospheric 
model. Variables required for the surface heat fux estimates 
are available with a temporal resolution of one hour and a 
spatial resolution of 0.25° × 0. 25°, with the exception of air 
density, which is at a 0.5° × 0.5° spatial resolution. 

COARE 3.5 parameterizes the drag coefficients 
(CDE and CDH) in the bulk formulas (Equations 8.1 and 8.2) as 
a function of gustiness, surface roughness, and atmospheric 
stability; it is mathematically expressed as 

ˇuw ˇuw
C z˜ z z  L G° ˘ ˘D / , / ,o 2U Sr r  U Gr 

˙ ˆ
2 

˛
˘ � � . (8.3)

ln˜z z/ ° ˇ˝ ˜z L°/�� o m �� 

Here, z is the height above the surface [m]; κ is the 
von Kármán constant (set to a value of 0.4; unitless); zo is 
the aerodynamic roughness length [m], and ψ m is a dimen-
sionless function that accounts for the effects of atmospheric 
stratifcation. G is the gustiness parameter, defned as the ratio 
of the wind speed, Sr [m s–1], to the vector-averaged wind, 
Ur [m s–1] (Beljaars and Holtslag, 1991; Edson et al., 2013). 
This parameterization attempts to account for mass, momen-
tum, and heat transfer at lower wind speeds but is nonzero 
because of the gustiness. This results in shear-driven turbu-
lence produced by gusts that signifcantly drive exchanges in 
convective conditions (Fairall et al., 1996; Edson et al., 2013). 

In order to use ERA5 data at each CYGNSS specular 
point, the nearest ERA5 grid point needs to be matched in 
time and space. Since ERA5 features an hourly temporal 
resolution and 0.25° × 0.25° spatial resolution, we use a 
trilinear interpolation method to match the CYGNSS and 
Modern-Era Retrospective Analysis for Research and Appli-
cations (MERRA)-2 data. The inputs from ERA5 include tem-
perature and humidity (at the surface and 10 m) and air 
density. 

For surface winds, two wind speed products are used 
from CYGNSS’s L2 V3.1 science data record (SDR) 
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wind speed product: the fully developed seas (FDS) wind 
speed and young seas limited fetch (YSLF) wind speeds. In 
order to maintain consistency for the data users analyzing 
surface fuxes and wind speeds from CYGNSS, LHF and 
SHF are calculated throughout the whole mission using both 
wind speed products. While it is ultimately up to the users 
to decide when it is best to use FDS and YSLF products, it is 
generally recommended that the FDS products are used for 
most applications and analysis, while the YSLF product should 
be utilized for higher wind situations, rapidly developing 
systems, and strong curvature in the fow (i.e., tropical and 
extratropical cyclones). 

Given that COARE 3.5 is validated for wind speeds up 
to 25 m/s, LHF and SHF estimates are fagged when wind 
speeds surpass this limit. When wind speeds exceed 25 m/s, 
sea spray ejected from the ocean surface has a nonnegli-
gible effect on the air-sea heat fuxes (Richter & Stern, 2014). 
Additionally, estimates of the drag coeffcient break down 
above this threshold; these result in the LHF and SHF estimates 
becoming increasingly erroneous. 

Additional quality fags are produced for range corrected 
gain (RCG) less than 3 due to unreliability in wind speeds. 

Inputs from every CYGNSS specular point and matched 
ERA5 data are inserted into the COARE 3.5 algorithm to esti-
mate latent and sensible heat fuxes. Since ERA5 atmospheric 
temperature and dew point data are at 2 m, COARE uses 
Monin-Obukhov similarity theory (MOST) to estimate tem-
perature and humidity at 10 m in order to estimate the fuxes. 
COARE produces a frst guess of the surface heat fuxes and 
uses this guess to initialize a stability iteration loop. Within this 
loop, COARE computes the Monin-Obukhov length, rough-
ness length, and transfer coeffcients along with a stability 
dependence. For the initial version of the surface heat fux 
product, the loop is repeated 10 times, as various trials have 
shown that this is the minimum needed for the values to reach 
an asymptote at each specular point. Future versions of this 
product may alter the loop so that it automatically terminates 
when the values converge. 

The transfer coeffcients calculated within the loop are 
used to estimate LHF and SHF using the bulk aerodynamic 
formulas (Equations 8.1 and 8.2), combined with both wind 
speed products from CYGNSS and the thermodynamic 
variables from MERRA-2. This results in two products each 
for LHF and SHF (Crespo et al., 2019), which are listed in 
Section 8.4.3. 

8.3. Calibration and Validation 
Direct in situ measurements of latent and sensible heat 
fuxes are limited within CYGNSS’s orbit and are often only 
available during feld campaigns or on a limited number of 
research buoys. Though these comparisons may be available 
for future versions of this product, for now, we have been able 
to use estimates from buoy data that match up with CYGNSS 
observations. While these buoys may not measure the fuxes 
directly, they do measure wind speeds, temperature, and 
humidity, which can be inputted into the same COARE algo-
rithm used to estimate the fuxes for the L2 CYGNSS estimates 
(Crespo et al., 2019). 

Buoy data was obtained from the following buoy net-
works: Prediction and Research Moored Array in the Tropi-
cal Atlantic (PIRATA), Triangle Trans-Ocean Buoy Network 
(TRITON), and the Tropical Atmosphere Ocean Array (TAO). 
These comparisons were done with data from August 1, 
2018, through December 31, 2021. 

For these comparisons, any values from the CYGNSS 
surface heat fux product that had a quality fag associated 
with them were removed. The remaining specular points 
were then used to compare the fuxes estimated from the 
buoys, with the resulting comparison in Figure 8.1. As shown 
in Figure 8.1, at lower fux values, the CYGNSS surface heat 
fuxes compare well with the buoy data and are along the 
one-to-one line. While the density plot shows a decent width 
(at least for LHF) around this line, overall, most of the fuxes 
from CYGNSS are in agreement and validate well with the 
buoy data. 

However, as the fuxes increase, there is greater scatter 
and disagreement between CYGNSS and the buoy data. 
For the LHF results, while CYGNSS overestimated some of 
the fuxes, it more often underestimated the fuxes, whereas 
it consistently underestimated higher SHF values. As a result, 
the overall root mean square difference (RMSD) for LHF was 
37.92 W/m2, while SHF RMSD was 9.61 W/m2. 

The differences observed at higher fux values likely came 
from uncertainties in the L2 CYGNSS wind speed, as there 
have been known errors at higher wind speeds. Addition-
ally, there may be other errors from MERRA-2 that were not 
factored in, such as errors related to precipitation. Granted, 
the number of comparisons at the higher fux values were lim-
ited, which may have resulted in the observed scatter. Future 
releases of the CYGNSS L2 wind speeds are expected to 
reduce these residual errors, while further investigation is also 
needed to assess and address the introduction of uncertain-
ties from ERA5 in future product releases. 



   

 
  

   
 
 

 
  

 
 

     

 

 

  

 

     

8. Level 2 Ocean Surface eat Flux Product 125 

Figure 8.1. CYGNSS surface heat fux comparisons (y-axis) compared to fux estimates from buoys (x-axis). Left: Latent heat fux. Right: 
Sensible heat fux. 

Despite these likely errors and uncertainties, the fuxes 
from the CYGNSS Surface Heat Flux product compare well 
with the ground truth from the buoy data. Future releases 
hope to include comparisons and validation with various 
feld campaigns (e.g., PISTON, CAMP2Ex) as well as more 
buoy data, especially at higher fux estimates. 

8.4. Dataset Description 
This dataset is being distributed in netCDF-4 format using 
internal compression (more computationally effcient com-
pared to external compression such as gzip) and adhering 
to netCDF Climate and Forecast (CF) Metadata Convention 
v1.6 and ISO-8601 conventions. Each fle is unique to a par-
ticular calendar day of a year and consists of one complete 
orbital revolution (assuming no data gaps). 

The fle naming convention is cyg.ddmi.sYYYYMMDD 
-HHMMSS-eYYYYMMDD-HHMMSS.l2.surface-fux-cdr. 
aAA.dVV.nc, where 

cyg = CYGNSS, which is the mission and platform 
source of the dataset. 

ddmi = Delay-Doppler mapping instrument. 
sYYYYMMDD = The year, month, and day of the start-

ing point of the frst data in the fle. 

HHMMSS = Hours, minutes, and seconds (respec-
tively) of date/time stamp. 

eYYYYMMDD = The year, month, and day of the end-
ing point of the last data in the fle. 

l2 = Level 2 processing. 
surface-fux-cdr = Surface fux dataset (Climate Data 

Record version). 
aAA = Algorithm version, where AA is the numerical 

algorithm version identifer (e.g., “a11” = Algorithm 
Version 1.1). Note: The algorithm version is numeri-
cally decoupled from the dataset version (see 
below). 

dVV = Dataset version, where VV is the numerical 
dataset version identifer (e.g., “d11” = Dataset Ver-
sion 1.1). Note: The dataset version is numerically 
decoupled from the algorithm version (see above). 

.nc = The fle extension indicating the usage of netCDF 
data formatting. 

The date and time represented by the fle name is with 
respect to GMT (Coordinated Universal Time [UTC]). 
Greater precision of the start and stop times is available in 
the netCDF global attributes. 

https://aAA.dVV.nc
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8.4.1. Variable Types 

Table 8.1. Dataset Variable Description 

Name Data type Missing value Description 

sample long N/A The netCDF coordinate variable associated with the sample 
dimension, which enumerates the zero-justifed index range of the 
delay-Doppler map (DDM) time instants contained in the fle. 

sample_time double –9999.f The mean UTC timestamp of the DDMs that were utilized to derive 
wind_speed from the original CYGNSS L2 data fles. Note that the 
DDM sampling period is not synchronized with the UTC change of 
second, so sample_time can occur at any time relative to the UTC 
change of second. 

spacecraft_id short –9999s The CCSDS spacecraft identifer:\n\t0xF7 (247): CYGNSS 1\n\ 
t0xF9 (249): CYGNSS 2\n\t0x2B (43): CYGNSS 3\n\t0x2C 
(44): CYGNSS 4\n\t0x2F (47): CYGNSS 5\n\t0x36 (54): 
CYGNSS 6\n\t0x37 (55): CYGNSS 7\n\t0x49 (73): CYGNSS 
8\n\t0x00 (0): end-to-end simulator\n\t0x0E (14): engineering 
model\n\t0x0D (15): default\n\t0xFF (255): unknown\n 

spacecraft_num byte –99b The CYGNSS spacecraft number: Ranges from 1 through 8 and 99; 
1 through 8 are on-orbit spacecraft; 99 is the CYGNSS end-to-end 
simulator. 

antenna byte –99b The CYGNSS nadir antenna that received the refected 
GPS signal associated with the DDMs utilized to derive 
wind_speed.\n\t0 = none\n\t1 = zenith (never 
used)\n\t2 = nadir_starboard\n\t3 = nadir_port 

prn_code byte –99b The PRN code of the GPS signal associated with the DDMs utilized 
to derive heat fuxes. Ranges from 0 to 32; 0 = refectometry channel 
idle; 1 to 32 represent a PRN code. 

lat foat N/A The mean of the specular point latitudes of the DDMs that were 
utilized to derive wind_speed, ºN. 

lon foat N/A The mean of the specular point longitudes of the DDMs that were 
utilized to derive wind_speed, ºE. 

air_density foat –9999.f Air density at surface received from the MERRA-2 variable 
\“RHOA\.” 

effective_surface_ foat –9999.f Effective surface specifc humidity received from the MERRA-2 
humidity variable \“QSH\.” 

specifc_humidity foat –9999.f 10 m specifc humidity received from the MERRA-2 variable 
\“QV10M\.” 

surface_pressure foat –9999.f Surface pressure received from the MERRA-2 variable \“PS\.” 

air_temperature foat –9999.f 10 m air temperature received from the MERRA-2 variable 
\“T10M\.” 

lhf foat –9999.f The latent heat fux estimates at each specular point using the 
CYGNSS L2 wind_speed FDS minimum variance product. 

shf foat –9999.f The sensible heat fux estimates at each specular point using the 
CYGNSS L2 wind_speed FDS minimum variance product. 

lhf_yslf foat –9999.f The latent heat fux estimates at each specular point using the 
CYGNSS L2 YSLF product. 

shf_yslf foat –9999.f The sensible heat fux estimates at each specular point using the 
CYGNSS L2 YSLF product. 

(continued) 
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Name Data type Missing value Description 

lhf_uncertainty foat –9999.f Standard deviation of the additive latent heat fux error, based on 
known and reported uncertainties from CYGNSS L2 FDS winds, and 
MERRA-2 temperature and humidity. Dependent on lhf, in W m-2. 

shf_uncertainty foat –9999.f Standard deviation of the additive sensible heat fux error, based on 
known and reported uncertainties from CYGNSS L2 FDS winds, and 
MERRA-2 temperature and humidity. Dependent on shf, in W m-2. 

lhf_uncertainty_yslf foat –9999.f Standard deviation of the additive latent heat fux error, based on 
known and reported uncertainties from CYGNSS L2 YSLF winds, and 
MERRA-2 temperature and humidity. Dependent on lhf_yslf, in W 
m-2. 

shf_uncertainty_yslf foat –9999.f Standard deviation of the additive sensible heat fux error, based on 
known and reported uncertainties from CYGNSS L2 YSLF winds, and 
MERRA-2 temperature and humidity. Dependent on shf_yslf, in W 
m-2. 

cygnss_l2_ long N/A A sample index for the corresponding CYGNSS L2 sample index 
sample_index used for deriving the heat fuxes. This can be used with \“source\” to 

look up the CYGNSS L2 data and metadata. 

quality_fags short –9999s See Section 8.4.2 below. 

Key: CCSDS, Consultative Committee for Space Data Systems; PRN, pseudorandom noise. 

8.4.2. Bit-by-Bit Description of Quality Flag Variable 

The following table describes all the bits in the quality fag variable. 

Bit number Flag value 
(0 = LSB) (2^bit#) Bit name Meaning when bit is 1 (1 means bit has been set; 0 means unset) 

0 1 poor_overall_quality If any one of the following fags are set, then 
poor_overall_quality will be set: low_quality_gps_ant_knowledge 
OR low_range_corrected_gain OR cygnss_l2_fatal_fag OR 
low_FDS_wind_speed OR low_yslf_nbrcs_wind_speed OR 
high_FDS_wind_speed OR high_yslf_nbrcs_wind_speed 

1 2 spare_1 Always zero. 

2 4 low_range_corrected_ Range corrected gain is less than 3. 
gain 

3 8 ascending_satellite Satellite is on the ascending node of the orbit (subsatellite point latitude is 
increasing). 

4 16 cygnss_l2_fatal_fag CYGNSS L2 fully developed seas (FDS) sample fag is set to fatal; data are 
discarded for FDS wind speed. 

5 32 low_general_wind_speed CYGNSS L2 FDS wind speed < 0 m/s. 

6 64 low_yslf_wind_speed CYGNSS L2 YSLF wind speed < 0 m/s. 

7 128 high_general_wind_speed CYGNSS L2 FDS wind speed > 25 m/s. 

8 256 high_yslf_wind_speed CYGNSS L2 YSLF wind speed > 25 m/s. 

9 512 cygnss_l2_yslf_fatal_fag CYGNSS L2 YSLF sample fag is set to fatal. 

Key: LSB, least signifcant bit. 
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8.4.3. Grid Description 

Given that LHF and SHF are calculated at every specu-
lar point observed by CYGNSS, the spatial distribution of 
the CYGNSS Heat Flux Product is the same as the Level 2 
CYGNSS Climate Data Record (CDR) Wind Speed Product 
(see Chapter 7 for details). Each specular point is 25 km 
wide; at the beginning of the mission, each spacecraft was 
observing up to four specular points per second (32 per 
second for the entire constellation). Beginning in July 2019, 
the sampling was reduced from once per second to once 
every half second, reducing along-track beam smearing 
and now resulting in up to 64 wind speed observations per 
second for the entire constellation. The refected signal from 
the GPS satellite will remain within CYGNSS’s antenna view 
pattern, allowing for long swaths of continuous specular point 
observations; the length of these swaths is not consistent. 

Though CYGNSS’s orbit reaches the 35th parallel in both 
hemispheres, it can consistently make observations up to 
the 38th parallel, allowing it to observe nontropical systems 
(Crespo et al., 2017, 2019). On average, CYGNSS has 
a median revisit time of just under 3 hours and a mean of 
around 7 hours. However, this is not consistent across its 
orbit. Near the edge of its orbit, CYGNSS’s revisit time is 
much longer, though it can feature many observations within 
the span of a few hours; revisit times are much shorter near the 
equator (Park et al., 2019). 

8.4.4. Related Products 

All related data products are referenced here: https:// 
podaac.jpl.nasa.gov/cygnss. 

8.5. Data Access 
8.5.1. Obtaining Data and Documentation 

Note: The documentation (/doc) is located one directory 
level above the data directories. 

MD5 checksum fles are also available for all datasets in 
the data directories to assist you in verifying the integrity of 
each data fle/granule. To learn more about MD5 check-
sums, you may visit https://en.wikipedia.org/wiki/MD5. 

The POCLOUD (PO.DAAC Cloud data service) HTTPS 
service is now available to browse and download all 
data: https://cmr.earthdata.nasa.gov/virtual-directory/ 
collections/C2247621105-POCLOUD. 

For information on how to cite this data in presentations 
or publications, please read https://podaac.jpl.nasa.gov/ 
CitingPODAAC. 

For general news, announcements, and information on 
this and all other ocean and sea ice datasets available at the 
Physical Oceanography Distributed Active Archive Center 
(PO.DAAC), please visit the PO.DAAC web portal: https:// 
podaac.jpl.nasa.gov/. 

8.5.2. Contact Information 

Questions and comments should be directed to PO.DAAC 
at the NASA Jet Propulsion Laboratory (JPL). Please note 
that email is always the preferred method of communication, 
but the PO.DAAC users forum is highly recommended as a 
frst point of entry to address frequently asked questions. 

Email: podaac@podaac.jpl.nasa.gov 
WWW: https://podaac.jpl.nasa.gov/forum 
Mail: PO.DAAC User Services Offce 

Jet Propulsion Laboratory 
M/S T1721-202 
4800 Oak Grove Drive 
Pasadena, CA 91109 

8.6. Read Software 
Sample netCDF software readers are currently available 
in IDL, MATLAB, R, and Python at the following location: 
https://github.com/podaac/data-readers. 
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9. Level 3 Wind Speed Science Data Products 

9.1. Level 3 Gridded Wind Speed 
9.1.1. Summary 

This section describes the algorithm and data processing 
implementation used to produce a CYGNSS Level 3 gridded 
wind speed Science Data Product. The algorithm uses as its 
input the mission baseline Level 2 wind speed Science Data 
Product, which provides its wind speed values at the  time 
and location at which the measurements were made (i.e., 
in sensor-specifc latitude, longitude, and time coordinates) 
for each of the eight observatories in the CYGNSS con-
stellation and for each of the four bistatic radar channels 
on each observatory. This Level 3 gridded product com-
bines all 8 × 4 = 32 wind speed measurements made by 
the CYGNSS constellation each second, sorts them into a 
uniform (latitude, longitude, time) grid, and reports certain 
statistics of the samples in each bin (e.g., number, mean value, 
. . .), together with a compilation of the quality fags set for 
each of the samples in the bin. 

9.1.2. Algorithm Objectives 

The objective of this algorithm is to produce a gridded wind 
speed Science Data Product that is uniformly sampled in 
latitude, longitude, and time. This Level 3 product is generated 
from the full set of Level 2 wind speed samples produced 
by the constellation of observatories. In addition to a best 
estimate of the mean ocean surface wind speed within any 
particular bin, the algorithm also produces statistics of the 
wind speed that are derived from the population of samples 
of the Level 2 wind speed made by the constellation within 
that bin. A compilation of the quality fags associated with 
the population of individual Level 2 wind speed samples is 
also produced. 

9.1.3. Input Data Description 

The input data required by this algorithm are listed here. 
All relevant quality fags associated with the Level 1B 

bistatic radar cross section (BRCS) data that are used to 
produce the Level 2 wind speed data products are included 
as inputs. These quality fags (Gleason, 2014) are shown in 
Table 9.1. 

The relevant input products required from the Level 2 
wind speed algorithm (Clarizia et al., 2021) are shown in 
Table 9.2. 

9.1.4. Algorithm Production Overview 

The binning algorithm produces a minimum variance estimate 
of the mean wind speed in the bin over the spatial and tem-
poral intervals specifed by the bin’s boundaries. This is done 
using an inverse-variance weighted average of all Level 2 
samples of the wind speed that were made within the bin. 
Specifcally, for bin boundaries Lat , Lat , Lon , Lon , T ,min max min max min 

and Tmax, let S be the set of all Level 2 samples of the wind 
speed satisfying the following conditions: 

S = {Samplei | Latmin ≤ Lati < Lat max; 
Lon  ≤ Lon  < Lon ; T  ≤ T < T }, (9.1)min i max min i max 

where the ith sample has bin coordinates (Lati, Loni, Ti). Sort all 
Level 2 wind speed samples, together with their uncertainties, 
that are in S. The uncertainties are the estimated standard 
deviations of the wind speed estimates. The Level 3 wind 
speed estimate for that bin is given by 

°2u˙ i i˜ 
˛i Su SL3( )˝

°2
, (9.2)

˙˜ i 
˛i S  

where ui is the ith Level 2 minimum variance wind speed in S, 
and σi is its uncertainty. 

The uncertainty (i.e., standard deviation) in uL3 is given by 

1˜ ˝ . (9.3)L3 ˜ °2 
i˙ 

˛i S  

Relevant quality fags from the Level 2 wind speed algo-
rithm are compiled into an aggregate set of quality fags for 
the Level 3 wind speed produced here. The wind-speed-
dependent quality fags are shown in Table 9.3. For each 
fag, a value N will be prescribed, which is the number of 
samples in S for which the threshold in column two is met. 

Table 9.4 shows the rolled-up versions of the quality fags 
produced by the Level 1B DDM algorithm. For each fag, a 
value M will be prescribed, which is the number of samples 
in S for which the threshold in column two is met. 
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Table 9.1. Quality Flags From Level 1B BRCS Data Used for Level 1 Wind Speed Data Products 

Flag 

Large spacecraft attitude error 

Flag values 

0 = false, 1 = true 

Comment 

Overall delay-Doppler map (DDM) quality 

Negative signal power in Level 2 delay-Doppler map 
area (DDMA) 

Negative σ  in Level 2 DDMA 0

Low confdence in DDM noise foor estimate 

0 = poor, 1 = good 

0 = false, 1 = true 

This is the logical OR of other quality fags; TBD: 
detailed description 

At least one bin in Level 2 DDMA has a negative 
power value 

At least one bin in Level 2 DDMA has a negative 
power value 

Low confdence in open ocean noise foor estimate 0 = false, 1 = true 

Low confdence in open ocean noise temperature 
estimate 

Land present in DDM 

0 = false, 1 = true 

0 = false, 1 = true 

Specular point over open ocean 0 = false, 1 = true 

Large step change in DDM noise foor 0 = false, 1 = true 

Large step change in low noise amplifer (LNA) 
temperature 

Direct signal in DDM 

0 = false, 1 = true 

0 = false, 1 = true 

Low Rx antenna range corrected gain 0 = false, 1 = true 

High specular point incidence angle 0 = false, 1 = true 

High cross-correlation power present 0 = false, 1 = true 

Low confdence in GPS equivalent isotropically 
radiated power (EIRP) estimate 

0 = false, 1 = true 

Table 9.2. Input Products From Level 2 Wind Speed Algorithm 

Flag 

Minimum variance (MV) wind speed estimate 

Flag values 

Uncertainty in MV wind speed estimate 

Negative wind speed quality fag 

The >70 m/s–1 wind speed quality fag 

0 = nonnegative, 1 = negative 

0 = <70 m/s–1, 1 = >70 m/s–1 
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Table 9.3. Wind-Speed-Dependent Quality Flags 

Flag Flag values 

Fatal negative wind speed quality fag 1 = wind speed less than –5 m/s–1 

Fatal high wind speed quality fag 1 = wind speed greater than 100 m/s–1 

Nonfatal negative wind speed quality fag 1 = wind speed between –5 m/s–1 and 0 

Nonfatal high wind speed quality fag 1 = wind speed between 70 m/s–1 and 100 m/s–1 

Table 9.4. Rolled-Up Versions of Quality Flags From Level 1B DDM Algorithm 

Flag Flag values 

Large spacecraft attitude error 1 = true 

Negative signal power in Level 2 DDMA area At least one bin in the Level 2 DDMA has a negative power value 

Negative σ0 in Level 2 DDMA area At least one bin in the Level 2 DDMA has a negative power value 

Low confdence in DDM noise foor estimate 1 = true 

Low confdence in open ocean noise foor estimate 1 = true 

Low confdence in open ocean noise temperature estimate 1 = true 

Land present in DDM 1 = true 

Specular point over open ocean 1 = true 

Large step change in DDM noise foor 1 = true 

Large step change in LNA temperature 1 = true 

Direct signal in DDM 1 = true 

Low Rx antenna range corrected gain 1 = true 

High specular point incidence angle 1 = true 

High cross-correlation power present 1 = true 

Low confdence in GPS EIRP estimate 1 = true 
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9.1.5. Output Data Product Description 

The following output data values will be available: 

• uL3 = The minimum variance estimate of the mean 
wind speed averaged over the time and space 
intervals defned by Equation 9.1 for a particular 

Table 9.5. Quality Flags for the Output Data 

bin, as given by Equation 9.2 (units of meters/ 
second) 

• ˜L3 = The standard deviation of uL3 for a particular 
bin, as given by Equation 9.3 (units of meters/ 
second) 

• S = The number of samples used to calculate uL3. 

The output data quality fags are presented in Table 9.5. 

Flag or condition Flag values 

Overall Level 3 wind speed quality 0 = poor, 1 = good 

Fatal negative wind speed quality fag N = # of wind speed samples in the latitude, longitude boundary 
of S but not included in S because wind speed is less than 
–5 m/s–1 

Fatal high wind speed quality fag N = # of wind speed samples in the latitude, longitude boundary 
of S but not included in S because the wind speed is greater than 
100 m/s–1 

Nonfatal negative wind speed quality fag N = # of wind speed samples in S for which the = wind speed is 
between –5 m/s–1 and 0 

Nonfatal high wind speed quality fag N = # of wind speed samples in S for which the wind speed is 
between 70 m/s–1 and 100 m/s–1 

Negative signal power In Level 2 DDMA M = # of DDM samples in S where at least one bin in the Level 2 
DDMA has a negative power value 

Negative σ0 in Level 2 DDMA M = # of DDM samples in S where at least one bin in the Level 2 
DDMA has a negative power value 

Large spacecraft attitude error # of true DDM samples 

Low confdence in DDM noise foor estimate # of true DDM samples 

Low confdence in open ocean noise foor estimate # of true DDM samples 

Low confdence in open ocean noise temperature estimate # of true DDM samples 

Land present in DDM # of true DDM samples 

Specular point over open ocean # of true DDM samples 

Large step change in DDM noise foor # of true DDM samples 

Large step change in LNA temperature # of true DDM samples 

Direct signal in DDM # of true DDM samples 

Low Rx antenna range corrected gain # of true DDM samples 

High specular point incidence angle # of true DDM samples 

High cross-correlation power present # of true DDM samples 

Low confdence in GPS EIRP estimate # of true DDM samples 

Note: N and M are the number of samples that meet the condition described in column 2. 
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9.1.6. Algorithm Confguration Parameter Values 

The principle confguration parameters for this algorithm 
are the latitude, longitude, and time boundaries of the bins. 
The bins are uniformly spaced every 0.2° in latitude from 
–40° N to +40° N, every 0.2° in longitude from 0 to 360° 
E and every 1 hour in time. Specifcally, 

• Latmin = –40°, –39.8°, . . . , +39.8° N latitude 
• Lat max = –39.8°, –39.6°, . . . , +40° N latitude 
• Lonmin = 0°, 0.2°, . . . , 359.8° E longitude 
• Lon max = 0.2°, 0.4°, . . . , 360.0° E longitude 
• Tmin = (year, day of year, 0 hr UT), (yr, DOY, 1 hr 

UT), . . . , (yr, DOY, 23 hr UT) 
• T max = (year, day of year, 1 hr UT), (yr, DOY, 2 hr 

UT), . . . , (yr, DOY, 24 hr UT) 

9.2. Level 3 Storm-centric Gridded Wind 
Speed 
9.2.1. Summary 

This section describes the algorithm and data process-
ing implementation used to produce CYGNSS Level  3 
storm-centric gridded wind speed Science Data Products. 
The algorithm uses as its input the Level 2 wind speed Sci-
ence Data Products, which provide wind speed values at 
the time and location of the surface refection. This product 
reports averaged wind speeds in a regular 7.2° × 7.2° grid 
centered on the tropical cyclone. Gridded wind speeds are 
reported every 6 hours for each tropical cyclone, although 
some 6-hourly increments may be missing if there were no 
available overpasses during that time interval. Each wind 
speed measurement is made by a particular combination of 
CYGNSS spacecraft and GPS spacecraft. Because there 
are  8 CYGNSS spacecraft and 32 GPS spacecraft, 
there are 256 different combinations of spacecraft that com-
bine to make measurements. Much work has been done 
to minimize differences between the spacecraft, but there 
are small remaining differences and possible anomalies. 
This product only reports wind speeds that have passed an 
intertrack comparison test to increase reliability. 

9.2.2. Algorithm Overview 
9.2.2.1. Algorithm Objectives 
The objective of this algorithm is to produce regular 6-hourly 
gridded wind speeds for tropical cyclones (TCs) with 
increased reliability by incorporating averaging and com-
parisons between colocated measurements. This product, 
which is only available around TCs, is a more sophisticated 

version of the globally available standard CYGNSS L3 prod-
uct. All reported wind speeds in this storm-centric product are 
an average of wind speeds from at least two different “tracks” 
(combinations of CYGNSS receiver and GPS transmitter) 
that agree reasonably well. This removes most problematic 
data and wind speeds that are biased from track to track. 
Averaging also works to reduce noise in the measurement. 
Storm-centric coordinates are utilized to allow for a larger 
temporal averaging window without smearing between grid 
cells. A large temporal averaging window increases the 
typical number of tracks in each grid cell, allowing for more 
frequent intertrack comparisons to be made. 

9.2.2.2. Input Data Description 
The input data required by this algorithm are listed here. 

1. Wind speed inputs are CYGNSS Level 2 Sensor Data 
Record (SDR) Version 3.1 (Clarizia, 2015; Ruf et al., 
2019). These wind speeds incorporate improvements 
made to the Level 1 SDR calibration to compensate for 
variations in GPS transmit power level (Wang et al., 
2021). 

2. Storm center locations are from NOAA National 
Huricane Center (NHC) Best Track analysis and/or 
the Joint Typhoon Warning Center (JTWC; Landsea 
& Franklin, 2013). 

9.2.2.3. Data Organization 
The original CYGNSS Level 3 wind speed product is a stan-
dard gridded wind speed. The surface of the Earth is divided 
into a 0.2° × 0.2° grid. All wind speed samples that fall into 
a grid cell in an hour are combined via an inverse-variance 
weighted average of the wind speeds. This product is avail-
able globally and is only restricted to where CYGNSS can 
make wind speed measurements. 

In contrast, this new CYGNSS Level 3 wind speed product 
with storm-centric averaging is only available within 400 km 
of the center of a tropical cyclone (TC). The primary func-
tion of this new product is to use intertrack comparisons to 
identify and remove outlier tracks. Note that a track is defned 
as a particular combination of GPS and CYGNSS satellite 
whose specular point on the ocean’s surface traces a con-
tinuous curved path or “track.” Intertrack comparisons are 
valuable if a GPS/CYGNSS satellite combination has an 
unforeseen bias or calibration issue. To perform intertrack 
comparisons with most CYGNSS measurements, samples 
from multiple tracks must be colocated a signifcant fraction of 
the time. The fraction of colocated samples is a function of the 
temporal and spatial windows used in the colocation. To 
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retain high-resolution storm information, the width of the spa-
tial window should not be made much larger than the spa-
tial resolution of CYGNSS (25 km). The maximum temporal 
window depends on the speed of the storm (movement of 
the storm center, not the wind speed). Typical TCs can move 
up to about 25 km per hour, so a temporal window of just 
1–2 hours can cause smearing of the TC wind feld. 

Storm-centric coordinates (relative latitude/longitude 
pairs rather than absolute) are used in this algorithm to widen 
the temporal window of colocation without smearing the TC 
wind feld. A time-continuous storm center location is required 
to compute relative latitude and longitude coordinates for 
each sample. To approximate this, National Hurricane 
Center (NHC) or JTWC Best Track locations (available at 
primary synoptic hours) are linearly interpolated. 

Figure 9.1 shows the general algorithm used to create the 
storm-centric gridded L3 data product. Best Track data show 
when TCs are active and provide storm center locations every 
6 hours for storms in the northern Atlantic and eastern Pacifc 
(NHC) and in the Indian Ocean, western Pacifc, Southern 
Hemisphere, and central Pacifc (JTWC). First, CYGNSS 
Level 2 wind speeds within a 4.0° × 4.0° box centered on 

Figure 9.1. Data fow in the storm-centric Level 3 algorithm. 

a TC are selected. Every 6 hours (0, 6, 12, 18 Coordinated 
Universal Time [UTC]), a 3.6° × 3.6° grid centered on the 
Best Track storm center is populated with CYGNSS wind 
speeds according to the temporal window and the grid 
spacing. Each 6-hourly grid contains wind speeds from ± 
6 hours, which means there is some overlap between the 
two adjacent synoptic times. To prevent redundancy, data 
from ± 3 hours is required for a grid cell to report a wind 
speed. At least one track in a cell must be from ± 3 hours, 
but other data from a larger window of ± 6 hours are used 
for intertrack comparison. A ± 6-hour window was chosen 
to balance data availability and error due to real change in 
the TC’s wind feld. For example, a ± 24-hour window is too 
large in most cases because the storm’s size and intensity are 
likely to change signifcantly over 48 hours. Even a ± 6-hour 
window is too large in some cases. The Best Track storm 
intensity and wind radii are reported along with the storm-
centric Level 3 winds to inform the user of how quickly the 
storm is changing. There is also a “quality_status” parameter, 
which rates the consistency of tracks relative to storm intensity. 

Once relevant data have been selected within the tem-
poral window of ± 6 hours, the data are divided into grid 
cells. The grid cell spacing or reporting interval is 0.15° 
(16.7 km). When populating each grid cell, data are taken 
from a square of ± 0.30°, which is twice the grid spacing. This 
creates an overlap with adjacent cells, and the grid spacing 
is an oversampling of the wind feld. Figure 9.2 demonstrates 
how the cells overlap and where the data are selected. The 
red dot in the grid center is the grid cell that is the focus of 
this example. The black lines represent a portion of the grid. 
The shaded red region, which overlaps with all surrounding 
cells, is the area from where data can be taken to populate 
the center cell. 

The maximum distance between samples in a cell is 
0.85°, but a typical distance is smaller than this. Note that 
samples are averaged together within a cell so that the effec-
tive spatial resolution will become coarser. The impact on 
spatial resolution depends on the distribution of the samples 
within the cell. 

Using the gridding system explained above, a typical 
cell has 1.2 tracks per cell. Note that a minimum of 2 tracks 
is required to report a wind speed. 

9.2.2.4. Intertrack Comparison and Averaging 
The reported wind speed of a cell and the handling of 
multiple tracks are determined by the number of tracks T in 
the cell. Each cell must contain wind speed measurements 
(“samples”) from at least two tracks for a cell-averaged wind 
speed to be reported. If there is only one track in a cell, 
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Figure  9.2. The red dot is the center of an arbitrary grid cell. 
The reporting interval is 0.15 ° and is represented by the black 
squares. Each black square is a different grid cell that contains its 
own set of CYGNSS samples and its own averaged wind speed. 
The red square represents the area from which the center grid cell 
derives its CYGNSS samples. 

there is no way to verify that the wind speeds of that track 
are not problematic. When there are two tracks or more in 
the cell, the mean track wind speed ut is computed for each 
track. There are N samples in the cell and T tracks with Nt 

samples in the t th track. The mean track wind speed for the 
t th track is given by 

Nt
1 

ut ˜ uj, (9.1)° Nt j 1̃ 

where uj is the wind speed of the jth sample in the t th track. For 
the case T ˜ 2, u must agree to within the threshold given by t 

u ˜ u ° 0.4u ˛ 3, (9.2)t1 t2 C 

where uC is the average of all wind speeds in the cell 
expressed as 

t T˜ 

uC ˜ 
1 °Nt tu . (9.3)
N 

t 1̃ 

The threshold as a function of the mean cell wind speed 
is derived empirically from the behavior of a large popula-
tion of samples. If the difference between the two mean 
track wind speeds is below the threshold, the mean cell wind 
speed uC is reported as Equation 9.3. If the difference is 
above the threshold, no wind speed is reported for the cell. 

When there is a large difference between two tracks, there 
is no way to determine which mean track wind speed should 
be used. 

When there are more than two tracks in a cell (T > 2), an 
outlier test is done to check if any mean track wind speeds 
ut are anomalous. Track x is not an outlier if its mean track 
wind speed is within 3 standard deviations of the mean 
cell wind speed computed without track x. This is represented 
by the following condition: 

°x °x °x °xu ° 3̃ ˛ u ˛ u ˝ 3̃  , (9.4)C C x C C 

where the superscript –x indicates that track x is excluded 
when computing the term and where 

2˛C 
˙x ˇ 

1 
u ˙ ˝ (9.5)tT ˙ ˙ ˘1 1˜ ° ˆt x  

and 

1˜ ˛ u . (9.6)
˝ ˙T 1 t 

t x° 

Any outlier tracks that are fagged by this method are 
removed from further consideration. Before moving on, the 
algorithm checks to see if the removal of outlier track(s) 
removed all the samples within ± 3 hours. If there are 
no remaining samples within ± 3 hours, no wind speed is 
reported for the cell. This is because there are no measure-
ments in the ± 3-hour window of the cell that support the wind 
speed that would be reported. 

Next, the variation of the mean track wind speeds ˜t  is 
examined to see if the spread is typical. This is done whether 
outliers were found or not. First, the expected standard devia-
tion is computed from the following relation: 

˛Expected ˝ 0.26˙ ˙x u˜ top2 ˙3.5° , (9.7) 

where  is the average of the two highest mean track utop2 

wind speeds ˜t  after removal of the outlier track(s). If the 
standard deviation of the mean track wind speeds is more 
than 3 greater than the expected standard deviation, no wind 
speed is reported for the cell. 

°Outliers ˜ ˛ ˜̃ ˝ 3 (9.8)C  Expected 

If the condition in Equation 9.8 is not met, then the wind 
speed for the cell is reported as Equation 9.3 but with outlier 
track(s) excluded. 

This intertrack comparison algorithm is done for all grid 
cells. Typical SCG wind speed products are shown in 
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Figure 9.3, together with standard gridded L3 YSLF winds 
during the same time period for comparison. 

9.2.2.5. Intertrack Comparison 
One of the primary benefts of using storm- centric coordinates 
and intertrack comparisons is the additional consistency it 
imposes on the reported wind speeds. The standard deviation 
of the wind speeds within each cell can be used to quantify the 
consistency of the winds that are used to generate the reported 
cell wind speed. Figure 9.4 shows the probability distribution 
function (PDF) for the standard deviation of individual wind 
speed samples that are averaged together to produce a grid 
cell’s wind speed before and after applying intertrack qual-
ity control. The average standard deviation is 4.53 without 
the intertrack quality control and this is reduced to 3.53 with 
intertrack quality control applied. As outlier tracks are removed 
in the intertrack comparison process, the variance within each 
grid cell decreases. Because of this, there is a much smaller 

tail of high standard deviations in the distribution when inter-
track quality control is applied. The skewness of the distribution 
decreases from 1.85 to 1.40, which means that more samples 
are closer to the mean and fewer are in the high standard 
deviation tail with intertrack quality control. 

9.2.2.6. Output Data Product Description 
The key output data felds produced include the following: 

uL3 The minimum variance estimate of the mean wind 
speed averaged over the time and space intervals 
def ned by Equation 9.1 for a particular bin, as 
given by Equation 9.2 (units of meters/second) 

˜L3 The standard deviation of uL3 for a particular bin, 
as given by Equation 9.3 (units of meters/second) 

S Number of samples used to calculate uL3. 

A full list of the data felds is provided in Section 9.2.2.8. 

Figure 9.3. Examples of standard L3 young seas limited fetch (YSLF) winds without storm- centric regridding (left column) and L3 storm- 
centric gridded (SCG) wind felds covering the same time period (right) for two Hurricane Sam overpasses. The gaps in the L3 SCG felds 
are cells that either do not contain  CYGNSS samples from multiple tracks or have disagreement between tracks. 
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Figure 9.4. The probability distribution of wind speed standard deviation within a grid cell with two or more tracks. Each grid cell con-
tains many wind speed measurements. The standard deviation of those wind speeds tends to be lower after the intertrack quality control 
is applied. The average standard deviation is 4.53 and 3.53 without and with quality control, respectively. The skewness is 1.85 without 
intertrack quality control and 1.40 with. 

9.2.2.7. Algorithm Configuration Parameter Latmin =- 40°,- 39.8°, . . . , +39.8° N latitude 
Values Lat max =- 39.8°,- 39.6°, . . . , +40° N latitude 
The principle confguration parameters for this algorithm Lon  = 0°, 0.2°, . . . , 359.8° E longitude min 
are the latitude, longitude, and time boundaries of the bins. Lon max = 0.2°, 0.4°, . . . , 360.0° E longitude 
The bins are uniformly spaced every 0.2° in latitude from T  = (year, day of year, 0 hr UT), (yr, DOY, 1 hr UT), min 
–40° N to +40° N, every 0.2° in longitude from 0 to . . . , (yr, DOY, 23 hr UT) 
360° E, and every 1 hour in time. Specifcally, Tmax = (year, day of year, 1 hr UT), (yr, DOY, 2 hr UT), 

. . . , (yr, DOY, 24 hr UT) 
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9.2.2.8. L3 SCG Data Dictionary 
netCDF 

Name Long name dimensions Comment 

Global attributes 

bin_resolution_hr <none> <none> Bin resolution in hours. 

l3_storm_centric_algorithm_version <none> <none> L3 storm-centric processing algorithm version number. 

source <none> <none> Level 2 netCDF source fle names. 

storm_name <none> <none> Name of storm. 

geospatial_min_lat <none> <none> Minimum latitude of the grid that bounds the whole 
storm’s path. 

geospatial_max_lat <none> <none> Maximum latitude of the grid that bounds the whole 
storm’s path. 

geospatial_min_lon <none> <none> Minimum longitude of the grid that bounds the whole 
storm’s path. 

geospatial_max_lon <none> <none> Maximum longitude of the grid that bounds the whole 
storm’s path. 

time_coverage_start <none> <none> sample_time of the frst sample in the fle in ISO-8601 
form. 

time_coverage_end <none> <none> sample_time of the last sample in the fle in ISO-8601 
form. 

time_coverage_duration <none> <none> The time interval between test_coverage_start and 
test_coverage_end in ISO-1806 form. 

time_coverage_resolution <none> <none> The nominal time interval between samples in ISO-
1806 form. 

Dimensions 

time 

epoch_time 

storm_centric_lat 

storm_centric_lon 

Time 

Time centerin
of data base
on epoch 
reference 

Latitude relat
to best_track
storm_center_ 
lat 

Longitude 
relative to 
best_track_ 
storm_center_ 
lon 

<none> 

g <none> 
d 

ive <none> 
_ 

<none> 

Timestamp coordinate at the center of the 12 hr bin 
at 6 hr resolution. The range length is unique to each 
storm. 

Timestamp coordinate is at the center of the 12 hr bin 
at 6 hr resolution referenced by the historical epoch 
reference date/time. The epoch reference date/ 
time corresponds to the frst observation time window 
in the CYGNSS historical data record. Total number 
of timestamps in a fle corresponds to one UTC day. 
This value is rounded to the nearest hour, since leap 
seconds may have occurred, making the number of 
hours since the start of the mission not exact. 

Relative latitude coordinate at the center of the bin, 
°_north, at 0.1° resolution. Range is –3.6 to 3.6. 

Relative longitude coordinate at the center of the bin, 
°_east, at 0.1 ° resolution. Range is –3.6 to 3.6. 

(continued) 
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9.2.2.8. L3 SCG Data Dictionary (continued) 

Name Long name 
netCDF 
dimensions Comment 

lat Latitude <none> Absolute latitude coordinate at the center of 
the bin, °_north, at 0.1° resolution. Range is 
geospatial_min_lat to geospatial_max_lat. 

lon Longitude <none> Absolute longitude coordinate at the center 
of the bin, °_east, at 0.1° resolution. Range is 
geospatial_min_lon to geospatial_max_lon. 

Per-time step values 

best_track_storm_center_lat Storm center 
latitude 

time Latitude coordinate of the storm center at the given time 
as reported by the NHC/JTWC’s Tropical Cyclone 
Best Track data product. Range is –90 to 90. 

best_track_storm_center_lon Storm center 
longitude 

time Longitude coordinate of the storm center at the given 
time as reported by the NHC/JTWC’s Tropical 
Cyclone Best Track data product. Range is –180 to 
180. 

storm_status Storm status time The level of storm development as reported by the 
NHC/JTWC’s Tropical Cyclone Best Track data 
product: 
0 = tropical depression 
1 = tropical storm 
2 = typhoon 
3 = super typhoon 
4 = tropical cyclone 
5 = hurricane 
6 = subtropical depression 
7 = subtropical storm 
8 = extratropical systems 
9 = monsoon depression 
10 = inland 
11 = dissipating 
12 = low 
13 = tropical wave 
14 = extrapolated 
15 = unknown 
16 = disturbance 
17 = error 

best_track_max_sustained_wind_speed Maximum 
sustained wind 
speed 

time Maximum sustained wind speed in meters per second 
as reported by the NHC/JTWC’s Tropical Cyclone 
Best Track data product. 

best_track_r34_ne Radial extent of 
34 knot winds 
in northeast 

time In the northeast quadrant, how far from the storm center 
34 knot winds exist as reported by the NHC/JTWC’s 
Tropical Cyclone Best Track data product. 

best_track_r34_nw Radial extent of 
34 knot winds 
in northwest 

time In the northwest quadrant, how far from the storm 
center 34 knot winds exist as reported by the NHC/ 
JTWC’s Tropical Cyclone Best Track data product. 

best_track_r34_sw Radial extent of 
34 knot winds 
in southwest 

time In the southwest quadrant, how far from the storm 
center 34 knot winds exist as reported by the NHC/ 
JTWC’s Tropical Cyclone Best Track data product. 

(continued) 
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9.2.2.8. L3 SCG Data Dictionary (continued) 

netCDF 
Name Long name dimensions Comment 

best_track_r34_se Radial extent of 
34 knot winds 
in southeast 

time In the southeast quadrant, how far from the storm center 
34 knot winds exist as reported by the NHC/JTWC’s 
Tropical Cyclone Best Track data product. 

quality_status Quality status time The quality status measures how well all samples in the 
“time” dimension perform in intertrack comparison tests 
relative to the storm intensity: 
–1 = Wind speeds were not computed 
0 = Not enough data to determine status 
1 = Poor quality 
2 = Average quality 
3 = High quality 

Storm-centric per-grid values 

storm_centric_wind_speed Storm-centric time, storm_ Averaged CYGNSS L2 YSLF wind speed of samples 
wind speed centric_lat, in the bin over the spatial and temporal intervals 

storm_centric_ specifed by the bin’s boundaries. Some wind speed 
lon tracks may be removed from averaging if they do 

not meet intertrack quality control standards. Wind 
speeds gridded relative to the storm_centeric_lat and 
storm_centeric_lon. 

wind_averaging_status Wind speed time, storm_ Wind speed averaging status based on the number of 
averaging centric_lat, tracks used in the calculation. Everything with a value 
status storm_centric_ of 1 and lower is considered poor quality. Values: 

lon –7 = Grid cell is located outside of the CYGNSS 
range 
–6 = Grid cell is located near land 
–5 = Three or more tracks with outliers, no close tracks, 
and high standard deviation 
–4 = Three or more tracks with outliers and no close 
tracks 
–3 = Three or more tracks with no outliers and high 
standard deviation 
–2 = Two tracks with disagreement 
0 = No data 
1 = Only one track 
2 = Two tracks with agreement 
3 = Three or more tracks with no outliers and low 
standard deviation 
4 = Three or more tracks with outliers and close tracks 

num_wind_speed_tracks Number of time, storm_ The number of L2 wind speed tracks in grid cell. 
wind speed centric_lat, 
tracks storm_centric_ 

lon 

num_winds Number of time, storm_ The number of L2 wind speeds in grid cell. 
wind speeds centric_lat, 

storm_centric_ 
lon 

(continued) 
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9.2.2.8. L3 SCG Data Dictionary (continued) 

netCDF 
Name Long name dimensions Comment 

Whole storm per-grid values 

wind_speed Wind speed time, lat, lon Averaged CYGNSS L2 YSLF wind speed of samples 
in the bin over the spatial and temporal intervals 
specifed by the bin’s boundaries. Some wind speed 
tracks may be removed from averaging if they do not 
meet intertrack quality control standards. Wind speeds 
are output on a grid bound by geospatial_min_lat, 
geospatial_max_lat, geospatial_min_lon, and 
geospatial_max_lon. 

9.3. References 

Clarizia, M. P. (19 Nov. 2015). Algorithm Theoretical Basis 
Document Level  2 wind speed retrieval. CYGNSS 
Project Document, SPRL 148-0138, Rev 2, Chg 2. 

Clarizia, M.  P., Pascual D., Zavortony V., McKague D., 
Ruf, C. (2021). CYGNSS Algorithm Theoretical Basis 
Document Level  2 wind speed retrieval. Revision 2, 
Change 2, University of Michigan Doc. 148-0138, 
95 pp. https://gnss-x.ac.cn/docs/gnssr/148-0138 
_ATBD_L2_Wind_Speed_Retrieval_R7.pdf. 

Gleason, S. (19 Nov. 2014). Algorithm Theoretical Basis 
Document Level 1B DDM calibration. CYGNSS Proj-
ect Document, SPRL 148-0137, Rev 1, Chg 0. 

Landsea, C. W., & Franklin, J. L. (2013). Atlantic hurricane 
database uncertainty and presentation of a new 

database format. Monthly Weather Review, 141, 
3576–3592. https://doi.org/10.1175/MWR-D-12 
-00254.1. 

Ruf, C.  S., Asharaf, S., Balasubramaniam, R., Gleason, 
S., Lang, T., McKague, D., Twigg, D., & Waliser, D. 
(2019). In-orbit performance of the constellation of 
CYGNSS hurricane satellites. Bulletin of the Ameri-
can Meteorological Society, 100(10), 2009–2023. 
https://doi.org/10.1175/BAMS-D-18-0337.1. 

Wang, T., Ruf, C. S., Gleason, S., O’Brien, A. J., McKague, 
D. S., Block, B. P., & Russel, A. (2021). Dynamic cali-
bration of GPS effective isotropic radiated power for 
GNSS-refectometry Earth remote sensing. IEEE Trans-
actions on Geoscience and Remote Sensing, 60. 
https://doi.org/10.1109/TGRS.2021.3070238. 

https://doi.org/10.1109/TGRS.2021.3070238
https://doi.org/10.1175/BAMS-D-18-0337.1
https://doi.org/10.1175/MWR-D-12
https://gnss-x.ac.cn/docs/gnssr/148-0138


 

 

  

   
 

 
 

 

  
 

 

  
  

  
 

 

 
  

 

 

 

  

  
 

 

 
 

 

  

   

  
 

  

   

  
 

 
 

 
 

 
 

  

  
 

  
 

10. Level 3 Soil Moisture Product 

10.1. Introduction 

The University Corporation for Atmospheric Research, Uni-
versity of Colorado (UCAR/CU) Cyclone Global Navi-
gation Satellite System (CYGNSS) Soil Moisture Product 
is an L-band bistatic radar dataset that provides estimates 
of 0–5 cm soil moisture at a 6-hour discretization for the 
majority of the extratropics. CYGNSS is a constellation of 
eight small satellites that was designed to observe ocean 
surface wind speed during hurricanes (PI Chris Ruf, University 
of Michigan); it is a NASA Earth Ventures Mission that was 
launched in December 2016. These satellites employ a rela-
tively new remote sensing technique called global naviga-
tion satellite system refectometry (GNSS-R), which records 
L-band signals transmitted by navigation satellites that have 
refected off the Earth’s surface and back into space. 

Traditional radar remote sensing requires a transmitter; 
by using existing signals from navigation satellites, GNSS-
R satellites avoid this requirement. All that is needed is a 
receiver, which signifcantly reduces the cost of a satellite 
mission. Because of this, several receivers can be launched 
for a fraction of the cost of one traditional remote sensing 
satellite. The outcome is more data that are collected more 
frequently, albeit with trade-offs that will be described in his 
handbook. 

CYGNSS, in effect, is repurposing the existing GNSS 
signals—using them for ocean surface remote sensing instead 
of navigation. Here, we repurpose the CYGNSS data to 
estimate soil moisture over land. This product should be used 
with caution—there are many known issues with the current 
version of the data, and the data are not fnal. Users should 
keep the following in mind when exploring the data: The 
CYGNSS mission was not designed for soil moisture remote 
sensing. Data are calibrated and recorded assuming that 
the rough ocean surface is the target. Only two people have 
been wholly responsible for the data provided here: reca-
libration over land, algorithm development, validation, and 
code generation, with a small amount of money generously 
provided by UCAR. In addition, using GNSS-R for remote 
sensing of the land surface is such a new feld that much of 
the theory behind the signal scattering over the land surface 
is still being understood. Our algorithm makes assumptions 
about the scattered signal that at best are simplifcations 
and at worst are incorrect. Keeping this in mind, we hope 
that users will not see these soil moisture retrievals as the best 

that GNSS-R, or even CYGNSS, can provide, but we do 
hope they will serve as a launching point for learning about 
the true capabilities of this new feld. 

We would like to acknowledge Dr. Chris Ruf and the rest 
of the CYGNSS team for working hard to provide such high-
quality GNSS-R to the community. Without their efforts, of 
course, there would be no soil moisture product. We would 
also like to acknowledge Jan Weiss, Maggie Sleziak, and 
Michael Rousseau at UCAR for helping put the retrievals 
online. 

10.2. Soil Moisture Sensing Using 
GNSS-R 
10.2.1. Previous Work 

Historically, the majority of spaceborne GNSS-R studies 
focused on signals refecting from the ocean surface either 
for the purpose of relating ocean surface roughness to wind 
speed or for altimetric applications. Ground- and aircraft-
based experiments had shown success in measuring GNSS-
R signals over land and relating them to changes in near 
surface (0–5 cm) soil moisture or vegetation water content, 
but it had generally been assumed that spaceborne GNSS-R 
signals recorded over the land surface would be too weak 
to be useful for these kinds of applications. 

After the launch of TechDemoSat-1 (TDS-1) in 2014, 
observational evidence began to mount in favor of devel-
oping GNSS-R for land applications. Both Camps et al. 
(2016) and Chew et al. (2016) analyzed data from TDS-1 
for sensitivity to soil moisture and found spatial and temporal 
variations in the GNSS refected signal that appeared to 
be driven by soil moisture. Since then, both TDS-1 and the 
SMAP radar receiver (adapted to record GNSS-R signals) 
have shown sensitivity to a variety of land surface variables, 
including wetland extent (Nghiem et al., 2017) and surface 
freeze/thaw (Chew et al., 2017). Both TDS-1 and SMAP, 
though garnering the largest spaceborne GNSS-R datasets 
of their time, do not collect enough data to provide opera-
tional products and are mostly limited to proof-of-concept 
investigations. 

NASA’s Cyclone GNSS (CYGNSS) constellation, 
launched in December of 2016, however, does provide 
enough data. Instead of being a single instrument, CYGNSS 
comprises eight GNSS-R satellites in low Earth orbit around 

143 



 

 

    

 

  

 

 

 

 
 

 

 

 
 

  

 

    
 

      

 

 

 

144 CCGGSS  AGDBOOK 

the tropics. This vastly decreases the temporal repeat time. For 
instance, for the latitudinal band ~±38°,  CYGNSS samples 
approximately 80% of SMAP’s 36 km EASE-2 grid cells 
every day, and most of the time,  CYGNSS will have multiple 
observations for these grid cells. 

10.2.2. Remote Sensing at L-Band 

Data collected by  CYGNSS are sensitive to near surface 
soil moisture for the same reason that all instruments that 
collect signals at L-band are sensitive to soil moisture. How 
strongly any signal refects off a surface is dependent on 
the dielectric constant of the surface. At L-band, the dielec-
tric constant of the Earth is mostly controlled by its moisture 
content, with wetter surfaces producing stronger refections. 
There is a secondary dependence on soil texture (i.e., the 
relative amounts of sand, silt, and clay that compose a soil), 
though it is small compared to the effect from soil moisture. 

L- band is often quoted as the wavelength of choice when 
it comes to soil moisture remote sensing. Higher frequencies 
like X-  or C-band cannot penetrate even minimal vegetation 
canopies, whereas L-band can. L-band can penetrate the 
soil surface to some extent, and the amount of penetration 
also depends on soil moisture (Njoku & Entekhabi, 1996). In 
general, the effective penetration depth of an L-band signal, 
and thus of GNSS- R signals, is 0– 5 cm. Longer wavelength 
signals, like P-band, have been studied for their ability to 
sense rootzone soil moisture, though its penetration depth 
will also depend on moisture content, which leads to greater 

uncertainty in knowing what depth the retrieved soil moisture 
is actually representing. Restrictions on the transmission of this 
wavelength have also limited its development. 

10.2.3. GNSS- R Sensitivity to Soil Moisture 

Since 2015, there have been several studies investigating the 
sensitivity of GNSS- R to soil moisture (Camps et al., 2016; 
Chew et al., 2016; Chew, Colliander, et al., 2017; Chew & 
Small, 2018; Chew et al., 2018). Most of these studies have 
been conducted using empirical observations from  CYGNSS 
or TechDemoSat- 1. Observational evidence clearly shows 
that GNSS-R is very sensitive to surface water from lakes and 
rivers (Figure 10.1), even in the presence of an overlying 
vegetation canopy. 

Measuring the sensitivity of GNSS- R/ CYGNSS obser-
vations to soil moisture, however, is more challenging. Spa-
tial variations in both land cover and topography, which 
affect the roughness of the surface, will also affect P . This r,eff 

is exemplifed in Figure 10.2, which shows a satellite image 
of northern India along with  CYGNSS observations of Pr,eff. 
Although higher P  is observed in vegetated areas, which r,eff 

should have higher soil moisture than the surrounding arid 
regions, one can also see the infuence of mountain ranges 
and other surface features on P .r,eff 

In order to untangle the response of P  to both soil mois-r,eff 

ture and land cover/surface roughness, we assume that 
over time only soil moisture changes, whereas land cover 
and surface roughness remain largely static. Of course, this 

Figure 10.1. Observations of P  over the Amazon basin. r,eff 
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approach ignores changes in vegetation water content. By 
looking at temporal fuctuations in both soil moisture and 
P , we can quantify the sensitivity of P  to soil moisture.r,eff r,eff 

Figure 10.3 shows an example of this kind of analysis in 
India, where changes in SMAP soil moisture are compared 
to gridded changes in P . The correlation between the two r,eff 

is strong (r = 0.84). 

10.3. The UCAR/CU Retrieval Algorithm 
10.3.1. Introduction to the Algorithm 

Our algorithm uses colocated soil moisture retrievals from the 
soil moisture active passive (SMAP) mission as “ground truth” 
to calibrate concurrent (same day)  CYGNSS observations. 
For a given location, a linear relationship between SMAP 
soil moisture and CYGNSS refectivity is determined, and the 
relationship is used to transform all  CYGNSS observations 
into soil moisture, even at times when there are no SMAP 
matchups. 

Using SMAP data as “ground truth” of course comes with 
many drawbacks, the major one being that SMAP soil mois-
ture retrievals are not actual ground truth observations and 
have their own errors and uncertainties. One must be careful 
when using  CYGNSS data in areas where it is known that 
SMAP performs poorly. In addition, SMAP’s 40 km spatial 
resolution is likely coarser than that of  CYGNSS, though this 
is still up for debate. Intelligent upscaling of CYGNSS data 
to the 36 km EASE grid that SMAP uses is necessary. If the 
resolution of CYGNSS is smaller than 36 km, then we are 
in effect degrading the CYGNSS data by doing this and 
not using it to its full potential. However, in the absence of 
mature or validated GNSS- R scattering models, empirical 
algorithms must suffce, and SMAP data are considered to 
be the most accurate of the existing soil moisture products. 

10.3.2. Algorithm Description 

This section is a step- by- step guide to the soil moisture retrieval 
algorithm. It assumes a working knowledge of the CYGNSS 

Figure 10.2. (a) Google Earth image of northern India. (b)  CYGNSS observations of P  over the same region. The color bar is continuous r,eff 

and is only chunked by 5 dB to highlight the response of P  to different land cover types. r,eff 

Figure 10.3. (a) Changes in P , gridded to 36 km, between May and August 2017. (b) Changes in soil moisture from SMAP between r,eff 

May and August 2017. Adapted from Chew and Small (2018). 
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Level 1, version 2.1 netCDF fles, all of which are available 
here: https://podaac.jpl.nasa.gov/CYGNSS. In general, 
for every day of the year, there will be eight Level 1 fles, 
one for each CYGNSS satellite. Each of the eight fles con-
tains information pertaining to the thousands of refections 
recorded on that day. The following steps are applied to 
each refection in each fle. 

10.3.2.1. Processing of Delay-Doppler Maps 
(DDMs) 
In previous works, we used the signal-to-noise ratio (SNR) as 
the signal of interest, which in the CYGNSS fles is contained 
in the metadata as a variable called “ddm_snr.” However, 
as time went on, we realized we were getting better results 
if we instead just pulled the peak value of the analog DDMs 
(variable name: power_analog) themselves and did not 
worry about the noise foor. We do not know why this is the 
case—possibly the noise foor itself is too noisy—and we do 
still utilize the SNR value itself for quality control. The peak 
value of the analog DDM is found and converted to dB, 
which we thereafter call Pr. The delay bin at which Pr occurs 
is also found during this step. 

10.3.2.2. Correction of Pr for Other Effects to 
Derive Pr,eff 

Pr is not just affected by soil moisture or surface roughness; it 
is also affected by the gain of the receiving antenna, bistatic 
range, and the transmitted power of the GPS satellite. Pr is 
then corrected for antenna gain, range, and the GPS transmit 
power assuming a coherent refection: 

t t  r 2P G  G ˛r rP ˙ ˆ , (10.1)rl rl2 4˝4˝ ˜R ˇ R ° ts sr 

twhere P  is the transmitted right-hand circularly polarized r 

(RHCP) power, Gt is the gain of the transmitting antenna, 
R  is the distance between the transmitter and the specularts 

refection point, R  is the distance between the specu-sr 

lar refection point and the receiver, Gr is the gain of the 
receiving antenna, ˜  is the GPS wavelength (0.19 m), and 

r˜rl is the surface refectivity. Prl is the Pr as explained above. 
If you want to do this yourself, you will need the follow-
ing variables: “sp_rx_gain” (Gr), “rx_to_sp_range” (R ), sr 

t t“tx_to_sp_range” (R ), and “gps_eirp” (P G ).ts r 

What we actually want to do is solve for ˜rl, and we do 
this by converting all terms to dB (some of them are already 
in dB in the CYGNSS fles). We tend to call ˜rl (in dB) that 
has been corrected for all these effects P , which stands for r,eff 

effective refectivity. 

10.3.2.3. Land Calibration 
We make additional empirical calibrations for the GPS trans-
mit power, which we have not described in previous papers. 
While these corrections are suboptimal, it is much better than 
doing nothing. It is no secret that v2.1 GPS transmit powers 
are rough estimates, and we have found some biases in Pr 
depending on GPS pseudorandom noise (PRN) #. However, 
unlike other researchers, we have not found that removing 
the block IIF satellites is necessary, so we keep them in to 
preserve more than a third of the total observations. 

We currently calibrate the CYGNSS data in part of the 
Sahara Desert where Pr is relatively stable throughout 
the year and soil moisture and vegetation changes have a 
negligible effect. In future versions, we will recalibrate over a 
longer time period and use data from dedicated CYGNSS 
cal/val sites, which at this time are still being determined. 
Figure 10.4 shows the part of the Sahara where the current 
calibration was completed (limits are indicated by the pins): 

Figure 10.5 shows what P  (labeled as SNR in the plot) r,eff 

looks like for the outlined region. Black dots are limits of what 
we will call subcells, which here we chose to be approxi-
mately 7 km × 7 km. In order to calculate PRN biases, we 
take the mean of Pr observations within each subcell and then 
calculate deviations from the mean (Figure 10.6). Because 
soil moisture, vegetation, and roughness should be expected 
to minimally affect Pr for each subcell, we assume that devia-
tions from the mean are the result of suboptimal PRN cor-
rections (and incidence angle variations, described in the 
next section). 

The goal of this exercise was to decrease the standard 
deviation of the distribution as much as possible (Figure 10.6). 
It turns out that if you bin this distribution by PRN, you see 
some consistent biases (Figure 10.7). 

These biases are removed from P  as the empirical r,eff 

calibration. It is likely that these biases actually change over 
time, and in future versions we will update these calibrations. 
Table 10.1 shows the biases themselves. 

10.3.2.4. Incidence Angle Correction 
Incidence angle is also expected to affect a coherent refec-
tion, though angle only signifcantly affects the P  when the r,eff 

angle is above 40 or 50°. We modeled how P  should r,eff 

be affected by incidence angle for several different soil 
moisture values (Figure 10.8). If you normalize everything 
to 0° incidence, then you fnd that soil moisture only slightly 
changes the relationship between P  and incidence angle.r,eff 

(This normalization is also done in Al-Khaldi et al., 2019.) We 
compared the mean, modeled relationship to observations 
of P  and confrmed the overall drop in P  as the incidence r,eff r,eff 

https://podaac.jpl.nasa.gov/CYGNSS
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Figure 10.4. The region used for calibration is outlined by the yellow pins. 

Figure 10.5. Observations of P  (colored dots). Black dots outline 7 km × 7 km subcells. r,eff 
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Figure 10.6. Left: Deviations of P  from the mean for each subcell. Right: Histogram of deviations of P . The standard deviation of the r,eff r,eff 

distribution is 1.3557 dB. 

Figure 10.7. Distributions of P  (labeled as SNR) as a function of PRN (unlabeled colored lines). r,eff 

Table 10.1. Empirical Biases in P  Found According to PRN r,eff 
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Figure 10.8. Left: Modeled relationship for how P  should vary depending on incidence angle and soil moisture. Middle: Same as the r,eff 

left- hand panel, though here modeled P  has been normalized to show that soil moisture does not signifcantly change the relationship r,eff 

between P  and incidence angle. The blue line is the mean of the normalized relationships. Right: We binned observations of P  over the r,eff r,eff 

Sahara in 5° increments to confrm that the modeled relationship at least loosely resembles what is seen in the observations. 

Figure 10.9. Distribution of changes of P  over the Sahara before (blue) and after (orange) calibration and adjustment for incidence r,eff 

angle. 

angle increases beyond 40°. We use the mean, modeled 
relationship to correct variations in P  due to incidence angle.r,eff 

After calibrating P  for PRN biases and incidence angle,r,eff 

we see a signifcant decrease in the standard deviation of 
changes in P  over the Sahara (Figure 10.9). The standard r,eff 

deviation decreased from 1.3 to 1 dB, which signifcantly 
improved soil moisture retrievals. 

10.3.2.5. Outlier Identification 
Standard quality fags are used in the  CYGNSS metadata to 
remove some outliers— the specifc fags we use are 2, 4, 5, 
8, 16, and 17, which in order are S-band transmitter powered 
up, spacecraft attitude error, black body DDM, DDM is a test 
pattern, direct signal in DDM, and low confdence in the GPS 
equivalent isotropically radiated power (EIRP) estimate. 

We perform additional quality control and remove the 
following: any observations with a (precorrected) SNR 

value less than 2 dB, observations with a receiver antenna 
gain less than 0, observations with an incidence angle 
greater than 65°, and any data with a Pr coming in at a 
delay bin outside of 7– 10 pixels (exclusive). In addition, 
we have found that results are improved if we impose a 
requirement that (precorrected) SNR must be less than or 
equal to the receiver antenna gain + 14. Lastly, we remove 
observations if the receiver gain is greater than 13 but still 
has a corrected P  value less than 0. These are empirical r,eff 

corrections that are not standardized among other research-
ers using  CYGNSS data. 

Lastly, any data before ~December 2017 refecting from 
a surface elevation above 600 m are removed. Because 
CYGNSS was optimized for ocean surface sensing, the 
satellites did not record DDMs that contained the full sur-
face refection coming from above about 600 m altitude 
because they were not looking for data from these heights. 
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The  CYGNSS team changed the software after December 
2017 to include these data. 

10.3.2.6. Removal of Data Affected by Open 
Water 
The removal of specular refection points that are affected by 
open water is a critical step before retrieving soil moisture. 
Even small water bodies ~25 m wide can signifcantly affect 
P , which then means that these P  observations will not be r,eff r,eff 

affected by soil moisture as strongly (Figure 10.10). We have 
probably tried a dozen different ways to mask open water, 
and none of them is perfect because no currently available 
water mask is perfect. Thus far, we have found the best suc-
cess using the Pekel et al. (2016) dataset (https:// global 
-surface-water.appspot .com), which is a 30 m optically 
derived water mask. Because it is derived from optical data, 
it underestimates the amount of water beneath vegetation. 

The current algorithm removes open water using the “sea-
sonality” data product provided by Pekel et al. This product 
represents how many months out of a year a pixel is inun-
dated (0– 12). For our purposes, we make this product binary 
by considering any value greater than 1 to be fagged as 
water and anything below this to be nonwater. We do this 
because sometimes the permanent water bodies are sea-
sonally covered by vegetation, which makes the Pekel et al. 
dataset represent them as less than 12 (permanent). 

For each specular refection point, we fnd the amount of 
water within a 7 × 7 km region surrounding the point. This is a 
simplifcation of the actual footprint, but it is computationally 

more effcient than rotating axes to form actual ellipses, 
which themselves are simplifcations and not well quanti-
fed. If the amount of water in the 7 × 7 km region exceeds 
1%, we remove that  CYGNSS observation from consider-
ation. Changing these thresholds or region sizes changes 
the results, though never uniformly increasing or decreasing 
error across regions. 

10.3.2.7. Transforming Pr,eff Into Soil Moisture 
Here, we will describe how P  is transformed into soil r,eff 

moisture, using SMAP soil moisture retrievals to calibrate 
CYGNSS observations. Our calibration period was chosen 
to be March 17, 2017– October 1, 2018. 

Our algorithm is very simple: It assumes that P  is linearlyr,eff 

related to SMAP soil moisture. This relationship is expected 
to vary spatially, though in its current form, we assume that 
it does not change over time (future versions will allow for 
these changes). For a given location, we calculated the slope 
of the best ft linear regression between SMAP soil moisture 
and CYGNSS P  after having removed the mean of each r,eff 

for the entire time series. Before we can describe this in more 
detail, however, we have to understand what “a given loca-
tion” means in this context. 

We already described that we assume that P  has a r,eff 

fner spatial resolution than SMAP’s 40 km resolution. We 
have found that we get the best results when we grid our Pr,eff 

observations to ~3 × 3 km “subcells” and then aggregate the 
gridded observations to the 36 km SMAP EASE- 2 grid resolu-
tion (Figure 10.11). Why subcells? If we were to aggregate 

Figure 10.10. The correlation between  CYGNSS observations and SMAP soil moisture for part of the United States (colored pixels). The 
Pekel et al. (2016) dataset for this region is also shown— the area is dominated by large reservoirs and smaller lakes. The correlation be-
tween SMAP and  CYGNSS is low when observations fall on or near water bodies, which is expected. For reference, large black outlined 
boxes are the 36 km EASE- 2 grid used by SMAP, which normally contains high- quality SMAP soil moisture observations. 
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Figure 10.11. Depiction of how observations of P  are gridded into subcells within a 36 km SMAP cell. r,eff 

Figure 10.12. The number of  CYGNSS observations for each subcell that were used for calibration. Fewer observations are found in higher 
elevation areas, which only have “good” data for about half the time series, relative to the lower elevation areas. Observations over open 
water have already been removed. 

all observations of P  in one 36 km grid cell and look at r,eff 

how P  varied within that grid cell, we would see variations r,eff 

in P  due to factors like land cover type and topography. By r,eff 

dividing the grid cell into smaller subcells, we see more consis-
tent relationships between P  and soil moisture. The subcells r,eff 

effectively help remove the confounding effects of land cover 
and topography on P . The number of points per subcell inr,eff 

the calibration period is shown in Figure 10.12; subcells with 
less than 3 observations were not used for calibration. 

Within each subcell, we calculated the linear regression 
between SMAP soil moisture and P  matchups (occurring r,eff 

on the same day) after having removed the mean from both 
SMAP and P  in that cell (correlation coeffcients for this r,eff 

relationship are shown in Figure 10.13). The mean values 
of both SMAP and  CYGNSS during the calibration period 
serve as our reference values in order to return an absolute 
value of soil moisture from  CYGNSS. In our algorithm, the 
reference value is the mean soil moisture for the entire cali-
bration period. We call the slope of the best ft line β, which 
is conceptualized in Figure 10.14. 
β is used to estimate soil moisture from  CYGNSS for data 

falling outside the calibration period as well as data within 
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Figure 10.13. The correlation coeffcient between SMAP soil moisture and  CYGNSS refectivity observations. Open water points have 
been removed. It is “easier” to get a higher correlation coeffcient when there is signifcant soil moisture variability throughout the year. 

Figure 10.14. The slope of the best ft line between SMAP soil moisture and P  (labeled as “Refectivity”) matchups is called β and is usedr,eff 

to calculate soil moisture from  CYGNSS. 

the calibration period when there are no SMAP matchups 
(since SMAP has a 2– 3 day overpass period): 

Soil °moistureCYGNSS ° ˛°̃ ° P ˝Soil moistureSMAP,r eff . 

β varies spatially (Figure 10.15). Unfortunately, sometimes 
it looks like β is infuenced by noise in regions where soil 
moisture shows little or no variability throughout the year. 
We are looking into parameter regionalization to minimize 
these effects. 

We then combine the subcell soil moisture retrievals by 
taking the average for a selected time period (either every 
6 hours or every day) to upscale them to the EASE- 2 36 km 
resolution. We are currently investigating whether or not the 
~3 km retrievals are valid on their own— if so, we will release 
them in a future version. 

10.3.2.8. Daily and Subdaily Retrievals 
We currently provide soil moisture retrievals on daily and 
subdaily (6 hourly) time steps. For the daily retrievals, we 
average all observations within a particular grid cell that fall 
within the 24- hour time period. For the subdaily retrievals, we 
average all observations for a particular grid cell in 6- hour 
intervals, which are currently midnight–6 a.m., 6 a.m.–noon, 
noon– 6 p.m., and 6 p.m.– midnight (Coordinated Universal 
Time [UTC]). 

10.3.2.9. Quality Control 
Currently, quality control is minimal— we remove soil moisture 
retrievals that indicate soil moisture being less than 0.01 or 
greater than 0.65 cm3 cm– 3. 
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Figure 10.15. The slope of the linear regression between  CYGNSS refectivity observations and SMAP soil moisture (β). This represents 
the sensitivity of CYGNSS to soil moisture, with lower values indicating a higher sensitivity— though low values are also found in regions 
where soil moisture does not tend to vary. Higher values of β mean that  CYGNSS is not as affected by increases or decreases in soil 
moisture. Be careful in interpreting this, as imperfect open water masking will cause an apparent insensitivity to soil moisture. 

Figure 10.16. Unbiased root mean square difference between SMAP and  CYGNSS soil moisture retrievals. Regions where SMAP 
always fags the data as being “poor quality” are semitransparent, such as the Amazon, central Africa, Indonesia, Japan, Southeast 
Asia, and the majority of the eastern United States. In these regions, you should be careful when using either SMAP or  CYGNSS soil 
moisture data. Higher ubRMSD in regions with “good quality” SMAP data tend to be found in regions that are seasonally fooded 
or near coastlines. It is possible that in these areas, the seasonal water infuence on  CYGNSS refectivity may overwhelm the soil 
moisture signal. Or it is also possible that the soil moisture signal in SMAP data is a red herring, and the brightness temperatures are 
actually responding to the increase in the fooded area instead of soil moisture. Answering this question will be the subject of future 
research. 

10.3.2.10. Soil Moisture Retrieval Uncertainty 10.4. Thoughts on Gridding 
Figure 10.16 shows the unbiased root mean square dif- The gridding scheme described in Section 10.3.2.7 that uti-
ference (ubRMSD) between CYGNSS and SMAP soil lizes ~3.3 km subcells in which to aggregate the  CYGNSS 
moisture retrievals for the calibration period (March 18, data will come as a surprise to some— the majority of 
2017–October 1, 2018). Semitransparent regions are those researchers analyzing  CYGNSS data aggregate the obser-
frequently fagged by SMAP as being poor quality. Note that vations to a much larger grid size (say, 25 km). However, 
we tend to get higher ubRMSD in areas that food seasonally. we have found that we get the best results when we grid 

https://10.3.2.10
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to a much smaller grid size and then upscale the retrievals 
afterward. 

The following represents a small, and possibly inappro-
priate, attempt to show why we believe the  CYGNSS data 
respond to land surface characteristics on these scales. We 
wanted to fnd an area where we could quantify how much 
“blurring” of the CYGNSS signal there is as the soil transitions 
from dry to wet. These examples are actually not that easy to 
fnd (we were trying to avoid looking at transitions between 
water / dry land), and we settled on looking at the transition 
between desert and agricultural land in the Punjab region of 
Pakistan (Figure 10.17). 

As a reminder, we currently think of the spatial footprint 
of CYGNSS to be an elongated ellipse, as shown in Fig-
ure 10.18. One might think that if the patch of land surface 

contained within this ellipse were completely dry,  then Pr,eff 

would be low, and if the patch of land were wet, then 
P  would be high. If the ellipse were centered on the transition r,eff 

between wet and dry such that half the ellipse was wet and half 
was dry, then the resulting value of P would be in between r,eff 

the low and high values (Figure 10.18). The transition distance 
between high and low values of P  as it moves across the r,eff 

landscape could be thought of as the blurring of an image. 
Figure 10.18 also shows larger example footprints with 

diameters of 36 km. In the case of the yellow footprints, the 
westernmost one does not overlap with the cropland, and 
the resulting signal will not be contaminated by the cropland. 
In the case of the blue footprints, the westernmost one still 
overlaps with the cropland, so in this case, we would expect 
to see a higher signal than if we also had data from the 

Figure 10.17. Left: GlobCover 2009 land cover map of the transitional region between desert and cropland in Punjab, Pakistan. Right: 
CYGNSS observations for the same region. The black line is our delineation between bare/croplands, which we gleaned from the land 
cover map. 

Figure 10.18. Simplifed footprints to illustrate how a remote sensing image will appear more or less blurred depending on footprint size. 
Yellow footprints are approximately 7 × 0.5 km in size, which is the smallest theoretical footprint for  CYGNSS, given its current integration 
time of 1 second. Blue footprints have a diameter of approximately 36 km. 
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westernmost yellow footprint. In this case, we would expect 
the blue footprints to show more blurring than the yellow ones. 

We attempted to quantify the “blurriness” of both 
CYGNSS P  observations and ungridded, Level 1, SMAP r,eff 

brightness temperature observations across this transition 
zone (Figure 10.20) by identifying the delineation between 
desert and croplands using the GlobCover 2009 land cover 
map (300 m resolution). Our fundamental goal in this exer-
cise was to quantify how “long” (distance- wise) it took for 
P  and brightness temperature observations to transition r,eff 

from their mean values over the desert to their mean values 
over the croplands. The easiest way to do this was to grid the 
CYGNSS and SMAP observations to the 300 m GlobCover 
2009 resolution and then quantify how many grid cells it 
took for CYGNSS and SMAP to transition across the entire 

region shown in Figure 10.17. Of course, the transition line is 
not directly oriented N– S, so we had to reference all pixels 
with respect to the line in order to collapse the dependence 
on latitude (Figure 10.19). 

We then quantifed the transition distance as being the 
distance that it took for P  to increase from its mean value over r,eff 

the desert to its mean value over croplands (Figure 10.20). We 
found this distance to be 8.65 km, which is only slightly larger 
than the theoretical smallest along- track resolution of 7 km. 

We repeated this exercise for the Level 1 SMAP V-pol 
brightness temperatures and found the transition distance to 
be approximately 38 km, which is pretty close to its actual 
resolution of 40 km; however, these could all be coincidences 
and need to be analyzed further before any blanket state-
ments can be made. 

Figure 10.19. Left: A depiction of how the Punjab was gridded and referenced to the transition line between desert and cropland. Right: 
Colored lines are gridded P , with each line representing one 300 m strip of grid cells, going N– S. The black line is the mean. The transi-r,eff 

tion area is the distance it takes for P  to change from its mean value over the desert to its mean value over croplands. r,eff 

Figure 10.20. The transition distances across the Punjab for  CYGNSS (left) and SMAP (right). 
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Finally, we have tested various gridding schemes on the 
CYGNSS data, and we fnd that both ubRMSD and 
the correlation between SMAP soil moisture and CYGNSS 
decrease and increase, respectively, when smaller grid sizes 
are used (Figure 10.21). 

10.5. In Situ Validation 
We are currently validating the  CYGNSS soil moisture 
retrievals against in situ observations for the time period 
March 17, 2017– March 1, 2019. The networks we have 
chosen for validation are the following: Cosmic- Ray Soil 
Moisture Observing System (COSMOS), Plate Boundary 
Observatory Water (PBOH2O), Soil Climate Analysis Net-
work (SCAN), Utah Snow Telemetry (SNOTEL), and US Cli-
mate Reference Network (USCRN), though not all networks 
have data for the entire validation time period. Although other 
networks exist (like iRON and SOILSCAPE), we found there 
to be little to no data that were useful for validation. We also 
removed some stations from our chosen validation networks 
that had long periods of nonsensical soil moisture data. In 
total, we used 203 different sites for validation. 

In the fgures and tables that follow, we show example 
CYGNSS soil moisture time series and the unbiased root 
mean square error (ubRMSE) between  CYGNSS and in 
situ soil moisture, as well as the ubRMSE between SMAP 
and in situ soil moisture for context. In general, SMAP and 
CYGNSS showed similar ubRMSEs, which one would 
expect, given that  CYGNSS was calibrated from SMAP. 
CYGNSS sneaked away with a slightly lower ubRMSE 
overall (Table 10.2). Of course, ubRMSE is not a perfect 

Table 10.2. Unbiased Root Mean Square Error 
(ubRMSE) Between  CYGNSS Soil Moisture/In Situ and 
SMAP Soil Moisture/In Situ for All 203 Stations and 
Divided by Network 

Figure 10.21. This fgure uses a region in Oklahoma to exemplify the effect of the different subcell grid sizes on resulting  CYGNSS soil 
moisture retrievals. Longitude and latitude were erroneously not labeled in these fgures. (top row) The unbiased root mean square dif-
ference (cm3 cm– 3) between SMAP and  CYGNSS soil moisture retrievals when different subcell sizes are used— ubRMSD decreases 
when the subcell size decreases. (middle row) The r2 value between SMAP soil moisture and P  when different subcell sizes are used— r2 

r,eff 

increases when subcell size decreases. (bottom row) Distributions of ubRMSD (cm3 cm– 3) and r2 for the region shown in the top two rows. 
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Figure 10.22. Example time series from various in situ validation networks (blue line) with  CYGNSS soil moisture retrievals (black dots). 
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descriptor of how well SMAP or  CYGNSS reproduces in 
situ time series, but it is the most commonly used one. 

Keep in mind that stations within these networks often 
contain only in situ data for a particular point, and that 
point may not be representative of the 36 km regional soil 
moisture. For example, many stations are located near water 

bodies or in agricultural felds. Stations near the ocean are 
particularly bad, since the SMAP data near coastlines are 
generally not at all representative of the coastal soil mois-
ture. Given that the in situ observations used for validation 
by SMAP are not available to the public, we had to make 
do with these. 

Figure 10.23. Maps showing the unbiased root mean square error between CYGNSS soil moisture and in situ observations around the 
world. 
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Table 10.3. In Situ Soil Moisture Sites Used for Validation and the ubRMSE of These In Situ Data With Respect to 
CYGNSS and SMAP 
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Table 10.4. In Situ Sites Used for Validation 

Note: Also shown are the number of observations used for validation— many in situ sites did not have data for the full time period used for 
validation (March 17, 2017– March 1, 2019). 
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Table 10.5. Table of In Situ Sites Used Together With  CYGNSS and SMAP RMSE, Number of  CYGNSS, and Number of 
SMAP Samples Used 

Note: Table spans 3 pages. Bias, slope, r values, and so on can be provided upon request. Tan cells are those where  CYGNSS had a 
smaller ubRMSE than SMAP, though in general they were very similar. 

(continued) 
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Table 10.5. Table of In Situ Sites Used Together With  CYGNSS and SMAP RMSE, Number of  CYGNSS, and Number of 
SMAP Samples Used (continued) 

10.6. Plans for Future Versions 
We hope to keep improving our product: A more robust 
calibration of the signal over land is a priority. We are 
considering releasing the 3 km soil moisture retrievals them-
selves if there is suffcient interest. We would also like to 
explore “smart gridding” of the data that allows for a more 
fexible mesh based on land cover type or topography to 
remove imposing arbitrary grid lines on the landscape. In 
the future, we will also explore parameter regionalization 
to increase the accuracy of  CYGNSS soil moisture retriev-
als near coastlines, where SMAP has trouble retrieving soil 
moisture due to its larger footprint. 

10.7. File Overview and Loading the Data 

Spatial coverage N: 38, S: – 38 Data netCDF4 
E: 164, W: – 135 format 

Spatial resolution 36 km × 36 km Platform CYGNSS 

Temporal 18 March 2017 to Sensor CYGNSS 
coverage present GNSS- R 

receivers 

Temporal 6 hours Version V1.0 
resolution 

Data contributors Chew, C. C., 
Small, E. E. 

File naming convention: ucar_cu_cygnss_sm_v1_ 
YYYY_DDD.nc 

YYYY: 4- digit year 
DDD: 3- digit day of year 

Each netCDF fle contains the following variables: 

latitude: Refers to the latitude of the center of the grid 
cell. Dimensions: 252 × 802. 

longitude: Refers to the longitude of the center of the 
grid cell. Dimensions: 252 × 802. 

timeintervals: The start and stop time for the subdaily 
soil moisture retrievals. For example, the frst row 

is (0,6), which means that the frst of the reported 
subdaily soil moisture retrievals were recorded 
between midnight and 6 a.m. Dimensions: 4 × 2. 

SM_daily: The average soil moisture for each grid cell 
recorded during the full 24- hour period. Dimen-
sions: 252 × 802. 

SM_subdaily: The average soil moisture for each grid 
cell recorded during each specifed time interval. 
Dimensions: 252 × 802 × 4. 

SIGMA_daily: The standard deviation of soil moisture 
observations for each grid cell for the full 24- hour 
period. Dimensions: 252 × 802. 

SIGMA_subdaily: The standard deviation of soil mois-
ture observations for each grid cell during each time 
interval. Dimensions: 252 × 802 × 4. 

10.8. Quality Flags— Important 
In order to keep fle size to a minimum, we provide quality 
fags in a separate fle (BoulderCYGSM_static_fags.nc). 
Just because they are in a separate fle does not mean you 
can ignore them, though. As we have tried to emphasize 
throughout this handbook, the retrievals we have provided 
are only version 1 and have known problems. 

To encourage the use of the quality fags, we have pro-
vided them in simple grids. We do not mean to say that you 
should not use data that are fagged, but you should use 
them with caution and not be surprised if retrievals are not 
what you would expect. 

The following are quality fag meanings and how we 
derived them. For all fags, a value of 1 = true, and a value 
of 0 = false: 

latitude: Refers to the latitude of the center of the grid 
cell. Dimensions: 252 × 802. 

longitude: Refers to the longitude of the center of the 
grid cell. Dimensions: 252 × 802. 

f ag_poor_SMAP: Indicates that  CYGNSS was 
calibrated to SMAP data where a large portion 

https://BoulderCYGSM_static_flags.nc
https://YYYY_DDD.nc
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(>90%) of the SMAP soil moisture retrievals were 
fagged as “not recommended for retrieval.” Dimen-
sions: 252 × 802. 

fag_small_SM_range: Indicates that CYGNSS was 
calibrated to SMAP data with a small range of soil 
moisture values (< 0.1 cm3 cm–3), which means the 
uncertainty in β is large. Dimensions: 252 × 802. 

fag_high_ubrmsd: Indicates a high unbiased root 
mean square difference between CYGNSS and 
SMAP retrievals (> 0.08 cm3 cm–3). Dimensions: 
252 × 802. 

fag_few_obs: Indicates a small number of observa-
tions in the grid cell for calibration, leading to a less 
certain β (n < 100). Dimensions: 252 × 802. 

fag_low_signal: Indicates low mean P  after water r,eff 

point removal in the cell, which likely means that 
roughness or vegetation effects are dominant (mean 
P  < 5 dB). Dimensions: 252 × 802. r,eff 
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11. Level 1 and 2 Uncertainty Analyses 

The CYGNSS mission consists of eight spacecraft dispersed 
around a common low Earth orbit at 35° inclination and 
520 km altitude. Each spacecraft carries a four-channel 
global navigation satellite system refectometry (GNSS-R) 
radar receiver capable of measuring GPS Level 1 (L1) sig-
nals scattered from the ocean surface (Ruf et al., 2013). 
Those received signals are frst calibrated into L1 measure-
ments of bistatic radar cross section (Gleason et al., 2016, 
2018) from which the L1 observables of normalized bistatic 
radar cross section (NBRCS) and leading edge slope (LES) 
are derived. The L1 observables are then used to retrieve 
Level 2 (L2) estimates of the 10 m referenced wind speed 
above the ocean surface (u10; Clarizia & Ruf, 2016). A 
detailed description of the mission and of the algorithms 
associated with production of its L1 and L2 Science Data 
Products is provided in Chapters 5–9. This chapter examines 
bottom-up and top-down assessments of the uncertainty 
in both the L1 NBRCS and LES and the L2 wind speed 
products. Particular attention is paid to the performance 
at the low NBRCS and LES values and high wind speeds 
encountered in tropical cyclones. One primary objective 
of this work is an assessment of performance relative to 
mission-level requirements on wind speed measurement 
uncertainty of ± 2 m/s at wind speeds below 20 m/s and 
±10% at wind speeds above 20 m/s. 

11.1. L1 Calibration of Ocean Surface 
Scattering Cross Section 
CYGNSS L1 calibration is performed in two steps. First, L0 
measurements by the onboard instrument are converted from 
units of raw digital counts to a L1A delay-Doppler map 
(DDM) of signal power in units of watts. This is performed 
using an estimate of the individual DDM noise foor, a near-
time coincident black body calibration load noise power 
estimate, and prelaunch instrument noise calibration tables, 
which characterize the instrument noise power variations 
with temperature. Second, the L1A DDM is converted to a 
L1B DDM of bistatic radar cross section (BRCS) values by 
an unwrapping of the other terms appearing in the bistatic 
radar equation. The primary correction terms in the L1B cali-
bration include the transmitter effective isotropic radiated 
power (EIRP), the receive antenna gain pattern, and the 
transmit path loss. 

After calibration, a 3 delay bin by 5 Doppler bin subre-
gion of the L1B DDM centered on the specular point is used 
to derive the two L1 observables. The NBRCS observable is 
computed as the summation of the L1B DDM over the 3 × 5 
region divided by the effective surface scattering area of 
the region. The LES observable is computed as the slope 
of the integrated delay waveform, found by summing across 
all 5 Doppler bins at each delay value and considering 
the result as a function of delay only. More details on the 
L1 calibration and error analysis can be found in Gleason 
et al. (2016, 2018). 

11.1.1. Bottom-Up Estimate of L1A and L1B Errors 

Bottom-up error analysis of the L1 calibration was performed 
using best estimates of the individual terms in the L1A and 
L1B calibration equations. This consisted, when possible, of 
performing error analyses on prelaunch measurements of sat-
ellite hardware (e.g., in the case of the low noise amplifer 
[LNA] noise power versus temperature characterization) and 
in other cases by using component specifcations together 
with models to predict errors (e.g., in the case of the impact 
of spacecraft attitude knowledge uncertainty on receive 
antenna gain error). Individual term-by-term estimates for 
all L1 error parameters are described in greater detail in 
Gleason et al. (2016, 2018). 

One signifcant error term in the L1 calibration is uncer-
tainty in the GPS EIRP, which is caused by errors in knowledge 
of the GPS transmit power and transmit antenna gain. The 
EIRP is monitored by a ground-based GPS power moni-
tor and those measurements are used to reduce the uncer-
tainty in the GPS antenna patterns and in the transmit power 
of individual GPS satellites [13]. This results in a GPS EIRP 
uncertainty of 0.24 dB. The combined uncertainty due to all 
other sources of error in L1 calibration is 0.30 dB. The total 
L1 uncertainty is the root-sum-square of these two terms, or 
0.38 dB (Gleason et al., 2018). 

11.1.2. Top-Down Estimate of L1B Error 

Top-down performance assessments are most often per-
formed of the geophysical parameters estimated by a sen-
sor rather than of its L1 measurements, largely because it 
can be diffcult to obtain accurate independent estimates 
of the L1 measurements with which to compare. In the 
case of CYGNSS, closely spaced satellites often make 
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11. Level 1 and 2 Uncertainty Analyses 165 

measurements that should be nearly identical to one another. 
Differences between the actual measurements can be used 
to assess many of the errors associated with L1 calibration. 
This “trailing pair” technique is used here to provide a top-
down assessment of the uncertainty in the L1 Science Data 
Products. 

A trailing pair dataset was assembled from measure-
ments made by the CYGNSS constellation during the period 
July 31 to August 23, 2017. All possible pairs of measurements 
made by two different spacecraft were considered and only 
those that met the following criteria were selected: difference 
in measurement time < 10 minutes; difference in specular 
point location < 5 km; and difference in incidence angle 
of observation < 1°. In every case, the two measurements 
shared the same GPS transmitting satellite. This selection 
results in a total of ~200,000 pairs of measurements, which 
represents ~3% of the total number of samples made during 
this 24-day interval. Suitable trailing pair measurements are 
found using a variety of possible pairs of the eight satellites 

in the constellation—typically sequential pairs separated 
by less than 10 minutes around the orbit plane. The tight 
restrictions on the similarity between the measurements are 
imposed to ensure that observations are made of a nearly 
identical ocean surface at the same measurement geometry. 
Scatterplots of the measurements by one satellite versus the 
other for both NBRCS and LES L1 observables are shown in 
Figure 11.1. 

The highest density of samples lies along the 1:1 center line 
in both plots, as expected. The statistical spread of the differ-
ence between the pair of measurements quantifes the mea-
surement error due to all sources other than those related to 
knowledge of the GPS transmission characteristics (i.e., the 
GPS EIRP), which are common to both measurements. Histo-
grams of the difference are shown in Figure 11.2. Note that Fig-
ure 11.1 shows the numeric data values themselves, whereas 
Figure 11.2 shows the relative differences in units of dB. 

The root mean square (RMS) values of the relative differ-
ences, estimated from the populations shown in Figure 11.2, 

Figure 11.1. Trailing pair log(density) scatterplots of (a) normalized bistatic radar cross section (NBRCS) and (b) leading edge slope (LES) 
measurements by CYGNSS. The diagonal black dashed line is the line of 1:1 agreement. The color scale is the log10 of the number density 
of points. 

Figure 11.2. Trailing pair difference histograms of normalized bistatic radar cross section (left) and leading edge slope (right) measure-
ments by CYGNSS. 
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are 0.48 dB and 0.71 dB for the NBRCS and LES observ-
ables, respectively. Since these are differences between 
two spacecraft measurements with independent measure-
ment noise and calibration errors, the uncertainty in one of 
the measurements is lower by a factor of √2. Therefore, the 
top-down estimate of uncertainty in L1 measurements due to 
all factors other than error in knowledge of the GPS EIRP is 
given by 0.34 dB (NBRCS) and 0.50 dB (LES). 

11.1.3. Comparison of Bottom-Up and Top-Down 
Results 

The bottom-up error budget discussed in Section 11.1.2 
specifes 0.30 dB as the bottom-up estimate of measure-
ment uncertainty in NBRCS due to all noise and calibration 
error effects other than GPS EIRP. This compares favorably 
to the top-down estimate of 0.34 dB found using the trailing 
pair method. The larger error in the case of the top-down 
estimate may be a result of larger actual errors than were 
assumed in the bottom-up analysis, or they may result from 
small differences in the ocean surface scattering cross sec-
tion given the separations between pairs of observations of 
up to 10 minutes and 5 km. A conservative approach is to 
assume the top-down value of 0.34 dB as an upper bound 
on the uncertainty. Combining it via root-sum-square addition 
with the GPS EIRP uncertainty of 0.24 dB noted in Section 
11.1.2 gives the total uncertainty in NBRCS. Likewise, the 
trailing pair estimate of LES uncertainty of 0.50 dB should 
also be combined via root-sum-square addition with the 
GPS EIRP uncertainty. The resulting total uncertainties in the 
L1 observables are given by 

NBRCS RMS uncertainty = 0.42 dB (11.1 ) 

LES RMS uncertainty = 0.55 dB. 

11.2. L2 Retrieval of Wind Speed 
The CYGNSS mission’s baseline wind speed retrieval algo-
rithm, used to produce its L2 wind speed Science Data 
Product, is described in detail in Clarizia and Ruf (2016). In 
summary, the algorithm uses geophysical model functions 
(GMFs), which relate u10 to the L1 observables, NBRCS 
and LES. The GMFs are derived empirically from a large 
population of coincident CYGNSS L1 measurements and 
independent estimates of u10 made by either numerical 
weather prediction models at low to moderate wind speeds 
or instruments on NOAA P-3 hurricane hunter aircraft at high 

wind speeds (Ruf & Balasubramaniam, 2018). The low to 
moderate wind versions are referred to as the fully developed 
seas (FDS) GMFs, and the high-wind versions are referred 
to as the young seas limited fetch (YSLF) GMFs. They differ 
as a result of the sensitivity of the measurements to long wave 
swell, which tends to be signifcantly more underdeveloped 
in the high wind conditions experienced in tropical cyclones. 

Each GMF provides a unique mapping from u10 to an 
L1 observable, and the retrieval algorithm inverts it given a 
measurement of the observable. This produces two estimates 
of u10, one for each observable, and they are combined 
together by a minimum variance estimator to produce the 
fnal wind speed estimate (Clarizia et al., 2014). Examples of 
the FDS GMFs for low to moderate wind speeds for both L1 
observables are shown in Figure 11.3a, and the YSLF GMFs 
at high wind speeds are shown in Figure 11.3b. 

Several features of the GMFs are noteworthy. At wind 
speeds below 5–10 m/s, the slope of the GMF (dObs/ 
du10) becomes very steep, and small changes in wind speed 
correspond to large changes in the L1 observable. The com-
ponent of wind speed retrieval error that is dependent on 
measurement error can be expected to be lowest in this 
regime. At higher wind speeds, the slope decreases mark-
edly. The value of u10 at which this transition occurs differs for 
the two observables and also depends weakly on incidence 
angle. The component of wind speed error due to measure-
ment error will be higher here. 

11.2.1. Bottom-Up Estimate of L2 Uncertainty 

Bottom-up construction of an error model for the retrieved L2 
wind speed consists of two parts. The uncertainty in measure-
ment of the L1 observables, due to both measurement noise 
and calibration error, is scaled to a corresponding error 
in the wind speed using a propagation-of-errors analysis. 
Intrinsic error in the wind speed retrieval algorithm is also 
considered. Intrinsic error represents a retrieval error that 
would have been present even if the measurements had 
been perfect. It accounts for such things as the dependence 
of the observable on other geophysical variables than wind 
speed that are not properly accounted for in the retrieval 
algorithm or a nonunique mapping from wind speed to the 
observable. These two error sources are considered to be 
statistically independent, and their RMS errors are combined 
by root-sum-square addition to produce the overall bottom-
up uncertainty. 

For small errors in the L1 observable, the corresponding 
wind speed retrieval error can be estimated by linearizing 
the GMF. The resulting wind speed retrieval error is given by 
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Figure 11.3. Geophysical model functions at low to moderate wind speeds in fully developed seas (FDS) (a, top row) and high wind 
speeds in young seas limited fetch (YSLF) conditions (b, bottom row) for the L1 observables NBRCS (left) and LES (right) at incidence 
angles of 10, 15, . . . , 55°. 

Figure 11.4. Sensitivity (defned as dObs/du10) of the (a) FDS GMF and (b) YSLF GMF to wind speed for L1 observables NBRCS (blue) 
and LES (green) at an incidence angle of 30°. 

˝1 
dObs ˛ ˜Obs°˛, (11.2 )˛ ˜u ° ˙Obs 10 du10 

where ɛ(Obs) is the RMS error in either the NBRCS or LES 
observable and the functional dependence of the observ-
able on u10 as shown in Figure 11.3. The values of the error 
are stated in Equation 11.1. The slopes of the GMFs (dObs/ 
du10) for both L1 observables are shown in Figure 11.4a 
for the low to moderate wind speed case and the slopes 
at high wind speeds are shown in Figure 11.4b. Results are 
only shown for an incidence angle of 30°, but the sensitivity 
is very similar at other angles. 

In both FDS and YSLF conditions, the NBRCS observable 
typically has a higher sensitivity to wind speed than does the 

LES observable. The exception is at wind speeds between 
~10 and 18 m/s in the FDS case, where LES sensitivity is 
slightly higher. Above ~18 m/s in FDS conditions, the LES 
observable becomes very small and effectively loses sensitiv-
ity to changes in wind speed. In YSLF conditions, the sensitivity 
for both observables is low but constant at high (> 25 m/s) 
wind speeds. 

The component of uncertainty in L2 retrieved wind speed 
due to errors in the L1 observables follows directly from Equa-
tions 11.1 and 11.2, using the values of dObs/du10 shown 
in Figure 11.4. Plots of the resulting values of ɛ(u10) with the 
NBRCS and LES observables are shown in Figures 11.5a and 
11.5b, respectively. Note that ɛ(u10) is in both cases close 
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to zero at very low wind speeds due to the high sensitivity 
(large dObs/du10) there. Note also that ɛ(u10) becomes 
very large with the LES observable at wind speeds above 
~18 m/s. This is consistent with its loss of sensitivity to wind 
speed, as seen in Figures 11.3a and 11.4a. 

The CYGNSS baseline L2 minimum variance (MV) 
retrieved wind speed is an inverse variance weighted aver-
age of the L2 winds derived from the two L1 observables. The 
component of its uncertainty due to errors in the L1 observ-
ables is a similarly inverse variance weighted average of the 
two ɛ (u ) values (Wang et al., 2019). In addition, a third Obs 10 

component of uncertainty is the intrinsic error in the retrieval 
algorithm itself, caused by the nonuniqueness of the rela-
tionship between u10 and the L1 observables. Intrinsic error 
is estimated using simulated observations produced by an 
end-to-end simulator (E2ES; Ruf & Balasubramaniam, 2018). 
The E2ES allows for noise-free L1 measurements without 
calibration errors to be simulated given a known wind speed. 
The RMS error in MV retrieval performance using these simu-
lated data is found to be 1.3 m/s for wind speeds below 
25 m/s. The overall uncertainty in the MV wind speed can 
be expressed as 

˝1˙ ˆ
0.5 

˙ ˆˇ 2 1 1 ˘˛ ˜u ° �ˆ ˜˛ ° � ˇ � ˘ ˆˆˆˆˆ,MV 10 ˇ intrinsic 2 2 ˘ 
ˇ ˇ ˜˛ ° ˜˛ ° ˘ ˘� NBRCS  LES � (11.3 )� � 

where ɛ = 1.3 m/s and ɛ  and ɛ  are given by intrinsic NBRCS LES 

Equation 9.2 and shown in Figures 11.5a–11.5b. The resulting 
bottom-up uncertainty in the minimum variance retrieved wind 
speed, ɛMV, is shown in Figure 11.5c. At low wind speeds, 
contributions from L1 measurement error are small, and the 
MV retrieval uncertainty is dominated by the intrinsic error. 
Above ~10 m/s, MV uncertainty begins to increase as the 
contributions from L1 measurement error become signifcant. 
Above ~18 m/s, the LES observable loses sensitivity to wind 
speed, and the MV uncertainty is dominated by errors in the 
measurement of NBRCS. 

A bottom-up estimate of L2 wind speed uncertainty for 
high wind retrievals using the YSLF GMF follows the same 
approach, with the appropriate YSLF sensitivity values shown 
in Figure 11.4b used instead. In and near tropical cyclones, 
the mission baseline Science Data Product uses YSLF retriev-
als based only on the NBRCS L1 observable. This is done 
because of their signifcantly higher sensitivity at all wind 
speeds than retrievals based on the LES observable. The 
bottom-up YSLF uncertainty is shown in Figure 11.6. In the fg-
ure, results are shown for different time averaging scenarios. 
The baseline CYGNSS L2 wind speed retrieval algorithm 
implements a variable amount of along-track averaging 
to account for changes in spatial resolution with incidence 
angles that result from the range of time delays and Dop-
pler shifts, centered on the specular point values, which are 
used to compute the L1 observables (Gleason et al., 2018). 

Figure 11.5. Bottom-up L2 wind speed retrieval uncertainty for low to moderate wind speeds in fully developed seas. (a) Component due 
to errors in L1 NBRCS observable; (b) component due to errors in L1 LES observable; (c) overall uncertainty in minimum variance estimate, 
including contributions from both errors in L1 observables and intrinsic error in the retrieval algorithm. 

https://11.5a�11.5b


  

 

 

 

  

  
 

  
 

 
 

 
 

 
  

 
 
 
 
 

  
 
 
 
 
 

  
 

 

 
 

  

   
 

 

11. Level 1 and 2 Uncertainty Analyses 169 

Figure 11.6. Bottom-up L2 wind speed retrieval uncertainty for high wind speeds in young seas limited fetch. The family of curves represents 
different numbers, n, of sequential samples averaged together. The number varies to account for the dependence of spatial resolution on 
incidence angle, with n = 1 above 50°, n = 5 below 15°, and n = 3 near the center of the feld of view at 30°. 

Individual measurements at the highest incidence angles (> 
50°) have spatial resolutions of ~25 km, so no additional 
averaging is performed. Measurements at the lowest inci-
dence angles (< 15°) have spatial resolution of ~15 km, and 
n = 5 sequential samples are averaged to produce an effec-
tive 25 km resolution. Measurements at the center of the feld 
of view (~ 30°) have n = 3 sequential samples averaged to 
produce the same effective resolution of 25 km. Averaging 
reduces the component of L2 retrieval uncertainty due to L1 
measurement error but not the intrinsic retrieval error. This is 
refected in Figure 11.6. At lower wind speeds, the total uncer-
tainty is dominated by the intrinsic component, and there is 
little dependence on the number of samples averaged. At 
higher wind speeds, L1 measurement errors are dominant, 
and the total uncertainty decreases from 7.6 m/s for a single 
sample to 4.0 m/s with four samples averaged together. 

11.2.2. Top-Down Estimate of L2 Uncertainty 

Top-down assessment of the uncertainty in the L2 data product 
at low to moderate wind speeds uses near-coincident match-
ups between CYGNSS measurements and 10 m referenced 
ocean surface wind speeds provided by the European Centre 
for Medium-Range Weather Forecasts (ECMWF) numeri-
cal weather prediction model (Andersson et al., 2015). All 
CYGNSS measurements made during September and Octo-
ber 2017 are used in the analysis. ECMWF winds, reported on 

a 0.25° grid, are bilinearly interpolated in space and linearly 
interpolated in time to the location and time of the CYGNSS 
measurements. Several quality control flters are applied to the 
matchup data. The ECMWF values are compared to similarly 
interpolated gridded outputs from the Global Data Assimilation 
System (GDAS) numerical weather prediction model (NOAA, 
2018), and a matchup is discarded if ECMWF and GDAS 
differ by more than 3 m/s. CYGNSS quality control flters 
include the use of samples that lie in the main beam of the 
nadir antenna footprint at antenna gain values within ~10 dB 
of the peak gain. In addition, samples are excluded if the GPS 
satellite is of block type IIF. These satellites have been found 
to suffer from considerably more transmit power variability 
than the earlier block types (IIR and IIR-M). After all quality 
control flters are applied, the total number of remaining pairs 
of samples in the matchup population is 30,883,518. 

A density scatterplot of the matchup samples is shown 
in Figure 11.7. The scatterplot is logarithmic in number den-
sity of samples to more clearly illustrate the distribution of 
samples both in the region of highest density and in the 
outlier regions with larger retrieval errors. The highest den-
sity of samples occurs along the 1:1 line where ECMWF 
and CYGNSS winds agree. Asymmetry in the distribution 
of samples away from the 1:1 line can introduce biases into 
the retrieval (non–zero mean differences between CYGNSS 
and ECMWF). Asymmetries can be seen in the fgure to 
increase at higher wind speeds. 
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Figure 11.7. Log(density) scatterplot of CYGNSS and matchup ECMWF “ground truth” wind speed samples used for top-down determi-
nation of wind speed retrieval uncertainty below 20 m/s. The diagonal black dashed line is the line of 1:1 agreement. The color scale is 
the log10 of the number density of points. 

The mean and RMS differences between ECMWF and 
CYGNSS wind speeds are shown in Figures 11.8a–c as a 
function of (a) ECMWF, (b) CYGNSS, and (c) the average 
of ECMWF and CYGNSS wind speeds. The dependence of 
the mean difference (or bias) on wind speed is markedly dif-
ferent in each of these three cases. The dependence of bias 
on ECMWF wind speed (Figure 11.8a) is slightly negative 
at lower wind speeds, has a zero-crossing to positive bias 
near 9 m/s, and grows increasingly positive at higher wind 
speeds. Since the bias is reported as (ECMWF – CYGNSS), 
this indicates that CYGNSS overestimates lower wind speeds 
and underestimates higher wind speeds. The dependence of 
bias on CYGNSS wind speed (Figure 11.8b) is slightly posi-
tive at lower wind speeds, has a zero-crossing to negative 
bias near 7 m/s, and then grows increasingly negative at 
higher wind speeds. The difference in sign of the small bias at 
low wind speeds in Figures 11.8a and 11.8b results because, 
while CYGNSS tends to overestimate low wind conditions 
(as reported by ECMWF) by several 10ths of a meter per 
second, its underestimation at high winds is signifcantly larger 
in magnitude, resulting in an overall shift in the low wind bias 
to several 10ths of a meter per second positive when sorted 
by the CYGNSS reported wind. The larger difference in 
sign and magnitude between Figures 11.8a and 11.8b at 

higher wind speeds results from the larger magnitude of the 
bias there, which produces a larger swing between sorting 
options. The dependence of bias on the average of ECMWF 
and CYGNSS winds (Figure 11.8c) lies roughly halfway 
between the other two cases, with negligible bias at low 
winds and a small negative bias above ~15 m/s. 

The behavior of the RMS difference versus wind speed 
is similar in all three cases. It includes a primary contribution 
from the CYGNSS retrieval errors plus smaller secondary 
contributions from errors in the original ECMWF wind felds 
and possible errors introduced by the spatial and temporal 
interpolation process used to align the two datasets. When 
comparing the bottom-up uncertainty estimate shown in 
Figure 11.5c with the top-down one in Figure 11.8, sev-
eral common traits are evident. The RMS uncertainty rises 
only gradually with wind speed below ~10 m/s, with val-
ues slightly below 2 m/s (the fraction of this value due to 
CYGNSS will depend on the allocation for errors in ECMWF 
and in the interpolation). The bottom-up error model attri-
butes this fairly fat dependence to the fact that the intrinsic 
component of retrieval error is the dominant contributor. The 
uncertainty rises more steeply above 10 m/s in both cases. 
The bottom-up error model attributes the steeper rise to the 
decreasing sensitivity of the L1 observables to wind speed 
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Figure 11.8. RMS and mean difference between matchup CYGNSS and ECMWF wind speeds plotted versus three difference measure-
ments of wind speed: (a) ECMWF, (b) CYGNSS, and (c) the average of ECMWF and CYGNSS. 
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and hence the increased sensitivity of the retrieved wind 
speed to errors in measurement of those observables. RMS 
uncertainty rises to ~4 m/s at 20 m/s for the bottom- up 
estimate and ~6 m/s for the top- down estimate. The differ-
ence is likely attributable to the bias evident in the top- down 
comparison, which is small below ~ 12 m/s but increases 
at higher wind speeds. Bias removal, either algorithmically 
or through improved calibration of the L1 observables, is 
a continuing topic of research by the  CYGNSS science 
team. The overall RMS difference, including all samples with 
ECMWF winds below 20 m/s, is 1.96 m/s. This value is 
weighted by the distribution of wind speeds in the matchup 
population, which is approximately Rayleigh distributed with 
a mean near 7 m/s. 

For a top- down estimate of uncertainty at high wind 
speeds in tropical cyclones, matchups are compiled from 
20 coincident overpasses of hurricanes by  CYGNSS and 
NOAA P-3 “hurricane hunter” aircraft that occurred during 
the 2017 Atlantic hurricane season. Coincidence is defned 
by locating the aircraft ground track during one of its eye-
wall penetrations that was closest to a CYGNSS specular 
point track for that overpass and requiring that they occurred 
within 30 minutes and 12.5 km of one another. The 20 cases 
considered include overpasses of Hurricanes Harvey on 
day of year (DOY) 236 (4 overpasses) and DOY 237; 
Irma on DOY 248; Jose on DOY 258 (2 overpasses), DOY 

259, and DOY 264 (4 overpasses); and Maria on 
DOY 266 (2 overpasses), DOY 267 (4 overpasses), 
and DOY 270. Comparison wind speeds were measured by 
stepped frequency microwave radiometers (SFMRs) installed 
on the P-3 aircraft (Uhlhorn et al., 2007). The maximum wind 
speed measured by the SFMR in the intercomparison dataset 
is 54 m/s (120 mph, Cat 3). 

Estimation of the uncertainty in  CYGNSS wind speed 
retrievals in and near hurricanes is done in two ways: frst by 
qualitatively examining individual hurricane overpasses and 
examining the impact of time averaging on the retrievals 
and second by quantitatively comparing the population of 
matchup samples. Six examples of hurricane overpasses are 
shown in Figure 11.9. Both the winds retrieved by  CYGNSS 
and measured by the SFMR on the P-3 are shown. Consid-
ering only samples for which SFMR wind speed is greater 
than 20 m/s, the RMS difference between  CYGNSS and 
SFMR is 5.2 m/s, and the mean difference (bias) is 1.0 m/s. 

11.2.3. Rolled- Up Performance Assessment 

The overall top- down RMS difference between CYGNSS 
and ECMWF wind speeds, including all coincident matchup 
samples for which ECMWF winds are less than or equal to 
20 m/s, was found to be 1.96 m/s. Note that this value 
includes components of error due to both CYGNSS and 

Figure 11.9. Examples of CYGNSS overpasses of Hurricanes Harvey, Jose, and Maria during 2017, which were coincident with NOAA 
P-3 hurricane hunter aircraft fights on (a) DOY 236, (b) DOY 258, (c) DOY 264, (d) DOY 266, (e) DOY 266, and (f) DOY 267. SFMR 
measurements of u10 are shown in blue, and  CYGNSS measurements are shown in green. 
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ECMWF uncertainty as well as interpolation errors associ-
ated with estimating ECMWF winds at the time and place 
of the CYGNSS samples. As such, it should be considered 
an upper bound on the uncertainty in the CYGNSS values. 
The uncertainty in ECMWF reported wind speeds has been 
assessed by intercomparisons with a large number of deep 
water National Data Buoy Center (NDBC) buoy measure-
ments during 1979–2009 (Stopa & Cheng, 2014). The RMS 
error in ECMWF reanalysis winds over the tropics was found 
to be 1.33 m/s. If this error is removed from the overall 1.96 
RMS difference (using root-difference-square subtraction), 
the remaining uncertainty in the CYGNSS wind speed is 
1.44 m/s. 

The top-down RMS difference between CYGNSS and 
SFMR wind speeds, including matchups taken during mutual 
hurricane overpasses and using samples for which SFMR 
winds are greater than or equal to 20 m/s, was found to 
be 5.2 m/s. For this sample population, the average SFMR 
wind speed was 28.8 m/s. As in the lower wind speed 
case, this value should be considered an upper bound on 
CYGNSS uncertainty because the RMS difference statis-
tic also includes errors in the SFMR measurement of wind 
speed and the effects of temporal and spatial decorrelation 
because the  two measurements are not made at exactly 
the same time and place. The uncertainty in SFMR reported 
wind speeds up to 70 m/s has been assessed by intercom-
parisons with 186 coincident dropwindsonde measurements 
made on 70 hurricane hunter aircraft fights during the 2005 
Atlantic hurricane season (Uhlhorn et al., 2007). The RMS 
difference between SFMR and dropwindsonde 10 m ref-
erenced wind speeds was found to be 4 m/s. If this error 
is removed from the overall 5.2 RMS difference (using 
root-difference-square subtraction), the remaining uncer-
tainty in the CYGNSS wind speed is 3.2 m/s. As a fraction 
of the average SFMR wind speed of 28.8 m/s, the high 
wind CYGNSS retrieval uncertainty is 11.3%. 

11.3. Discussion 
Bottom-up and top-down approaches to assessing the 
uncertainty in CYGNSS wind speed measurements show 
some similarities and some differences, both of which pro-
vide some insight into the characterization of performance. 
At low to moderate wind speeds using the retrieval algorithm 
based on a fully developed seas geophysical model function 
(GMF), the agreement between bottom-up model predic-
tions and top-down empirical comparisons with “ground 
truth” winds is generally good, in terms of both the absolute 
value of the RMS uncertainty and the relative dependence of 

the uncertainty on wind speed. Below ~15 m/s, the retrieval 
error grows slowly with wind speed as the sensitivity of 
the measurements to wind speed (the slope of the GMF) 
decreases. Above 15 m/s, retrieval error increases more rap-
idly because of both a further decrease in sensitivity and an 
increase in the retrieval bias (the mean difference between 
retrieved and ground truth wind speeds). The two effects are 
likely coupled in that a fxed bias in an L1 observable (e.g., 
due to calibration errors) will cause a larger retrieval bias 
at higher wind speeds due to the lower sensitivity there. It 
is hoped that future refnements in instrument calibration will 
lower the L1 bias, decrease the resulting L2 wind speed 
bias, and ultimately improve the overall uncertainty. 

The GMF used by the CYGNSS wind speed retrieval 
algorithm is constructed from ECMWF and SFMR u10 winds 
at low and high wind speeds, respectively. Both of these 
report actual 10 m referenced values, whereas the CYGNSS 
scattering measurements, which are sensitive to surface 
roughness forced by wind stress, should be more directly 
related to the equivalent neutral wind speed (Verspeek et al., 
2010; Ebuchi, 2017). The difference between the actual and 
equivalent neutral wind speeds is estimated to be 0.2 m/s 
globally (Hersbach, 2008; Verhoef et al., 2008), and this 
difference will contribute to the error in CYGNSS retrievals of 
actual wind speed. A possible future refnement for CYGNSS 
is the retrieval of 10 m equivalent neutral wind speed, similar 
to the practice in ocean wind scatterometry, to eliminate this 
source of error. 

The discrepancy between bottom-up and top-down per-
formance estimates is larger at high wind speeds using the 
retrieval algorithm based on the young seas limited fetch 
GMF. The bottom-up model predicts that retrieval noise can 
be signifcantly reduced by time averaging of the data, and 
this is borne out by the behavior of the observations. Indi-
vidual measurements are made with a 1-second average. 
Additional time averaging is performed in ground processing, 
with 3–5 seconds of averaging typically used to produce a 
wind speed product with 25 km spatial resolution. The dis-
crepancy between bottom-up and top-down performance 
is likely attributable at least in part to the use of a simplifed 
two-regime approach by the wind speed retrieval algorithm 
to account for variations in sea age and fetch length in and 
near tropical cyclones. It uses a single limited fetch GMF 
when near a storm without regard for the continuously varying 
transition that actually occurs from a fully developed state 
far from the storm center. A more proper, physically based 
approach should account for this transition zone and should 
also consider the variability of sea age, fetch length, and the 
resulting long wave swell within the storm, for example, as a 
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function of the storm quadrant. This is also an area of active 
research by the CYGNSS science team, with the expecta-
tion that future versions of the L2 wind speed retrieval algo-
rithm will incorporate ancillary information about the sea 
state by adjusting either the GMF or the L1 observables 
appropriately. 

The mission level requirements on wind speed mea-
surement uncertainty are ± 2 m/s at wind speeds below 
20 m/s and +10% above 20 m/s. The top-down perfor-
mance assessment of 1.4 m/s uncertainty at low to moder-
ate wind speeds using the FDS GMF demonstrates that the 
requirement has been met below 20 m/s. At higher wind 
speeds, the top-down assessment using the YSLF GMF dur-
ing hurricane overpasses demonstrates an 11% uncertainty, 
and the requirement has not been met. Future improvements 
to the retrieval algorithm will focus on two primary sources 
of error. Calibration of the L1 observables can be improved, 
most notably by lowering the uncertainty in knowledge of 
the GPS EIRP through better characterization of the transmit-
ter properties of the GPS constellation of satellites (Wang 
et al., 2019). Improved L1 calibration should ameliorate 
the increase in retrieval uncertainty that occurs at higher 
wind speeds because the sensitivity of the L1 observables 
to changes in wind speed is reduced. At high wind speeds in 
tropical cyclones, the dependence of the L1 observables 
on long wave swell, in addition to wind-driven capillary 
waves, is another signifcant source of retrieval error. Future 
improvements will attempt to incorporate ancillary sea state 
information to better account for this sensitivity. The improve-
ment to L1 calibration should improve performance and 
reduce uncertainty at all wind speeds. An improved sea 
state–dependent retrieval algorithm should further reduce 
the uncertainty at high wind speeds. Between those two 
improvements, the high wind measurement uncertainty of 11% 
should be lowered closer to the 10% mission requirement. 

11.4. References 

Andersson, E., Persson, A., & Tsonevsky, I. (2015). User 
Guide to ECMWF Forecast Products, ECMWF, v2.1, 
121 pp. 

Clarizia, M. P., & Ruf, C. S. (2016). Wind speed retrieval 
algorithm for the Cyclone Global Navigation Satel-
lite System (CYGNSS) mission. IEEE Transactions on 
Geoscience and Remote Sensing, 54(8). https://doi 
.org/10.1109/TGRS.2016.2541343. 

Clarizia, M.  P., Ruf, C., Jales, P., & Gommenginger, C. 
(2014). Spaceborne GNSS-R minimum variance wind 

speed estimator. IEEE Transactions on Geoscience 
and Remote Sensing, 52(11), 6829–6843. https:// 
doi.org/10.1109/TGRS.2014.2303831. 

Ebuchi, N. (2017). Evaluation of marine surface wind speed 
observed by AMSR2 on GCOM-W. IEEE Journal of 
Selected Topics in Applied Earth Observations and 
Remote Sensing, 10(9), 3955–3962. https://doi 
.org/10.1109/JSTARS.2017.2685432. 

Gleason, S., Ruf, C., Clarizia, M.  P., & O’Brien, A. 
(2016). Calibration and unwrapping of the normal-
ized scattering cross section for the Cyclone Global 
Navigation Satellite System (CYGNSS). IEEE Trans-
actions on Geoscience and Remote Sensing, 54(5), 
2495–2509. https://doi.org/10.1109/TGRS.2015 
.2502245. 

Gleason, S., Ruf, C.  S., O’Brien, A., & McKague, D.  S. 
(2018). The CYGNSS Level  1 calibration algorithm 
and error analysis based on on-orbit measurements. 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 12(1), 37–49. 
https://doi.org/10.1109/JSTARS.2018.2832981. 

Hersbach, H. (2008). CMOD5.N: A C-band geophysi-
cal model function for equivalent neutral wind. Tech-
nical Memorandum, ECMWF(554), 20 pp. http:// 
www.ecmwf.int/sites/default/fles/elibrary/2008/ 
9873-cmod5n-c-band-geophysical-model-function 
-equivalent-neutral-wind.pdf. 

NOAA. (2018). National Centers for Environmental Infor-
mation, Global Data Assimilation System. https:// 
www.ncei.noaa.gov/access/metadata/landing 
-page/bin/iso?id=gov.noaa.ncdc:C00379. 

Ruf, C., & Balasubramaniam, R. (2018). Development of the 
CYGNSS geophysical model function for wind speed. 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 12(1), 66–77. 
https://doi.org/10.1109/JSTARS.2018.2833075. 

Ruf, C., Unwin, M., Dickinson, J., Rose, R., Rose, D., Vincent, 
M., & Lyons, A. (2013). CYGNSS: Enabling the future 
of hurricane prediction. IEEE Geoscience and Remote 
Sensing Magazine, 1(2), 52–67. https://doi.org/10 
.1109/MGRS.2013.2260911. 

Stopa, J.  E., & Cheung, K.  F. (2014). Intercomparison of 
wind and wave data from the ECMWF reanalysis 
interim and the NCEP climate forecast system reanaly-
sis. Ocean Modeling, 75, 65–83. 

Uhlhorn, E.  W., Black, P.  G., Franklin, J.  L., Goodber-
let, M. A., Carswell, J. R., & Goldstein, A. S. (2007). 

https://doi.org/10
https://doi.org/10.1109/JSTARS.2018.2833075
www.ncei.noaa.gov/access/metadata/landing
www.ecmwf.int/sites/default/files/elibrary/2008
https://doi.org/10.1109/JSTARS.2018.2832981
https://doi.org/10.1109/TGRS.2015
https://doi
https://doi.org/10.1109/TGRS.2014.2303831
https://doi


  

  
     

 
 

 

 

       
 

11. Level 1 and 2 Uncertainty Analyses 175 

Hurricane surface wind measurements from an oper-
ational stepped frequency microwave radiometer. 
Monthly Weather Review, 135, 3070–3085. https:// 
doi.org/10.1175/MWR3454.1. 

Verhoef, A., Portabella, M., Stoffelen, A., and & Hers-
bach, H. (2008). CMOD5.n—the CMOD5 GMF 
for neutral winds (EUMETSAT Tech. Note, SAF/OSI/ 
CDOP/KNMI/TEC/TN/165), 13 pp. 

Verspeek, J., Stoffelen, A., Portabella, M., Bonekamp, H., 
Anderson, C., & Figa Saldaña, J. (2010). Validation 

and calibration of ASCAT using CMOD5.n. IEEE 
Transactions on Geoscience and Remote Sensing, 
48(1), 386–395. 

Wang, T., Ruf, C. S., Block, B., McKague, D. S., & Gleason, 
S. (2019). Design and performance of a GPS constel-
lation power monitor system for improved CYGNSS 
L1B calibration. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, 
12(1), 26–36. https://doi.org/10.1109/JSTARS 
.2018.2867773. 

https://doi.org/10.1109/JSTARS
https://doi.org/10.1175/MWR3454.1


 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

12. Project Publications 

This section provides a table of CYGNSS-related publications and conference presentations at the time this handbook was 
originally compiled. 

Author(s) Title Conference/journal Date 

Chen, D.; Gleason, S.; Ruf, C.; Spectral dependence of the response IGARSS 2012 2012 Jul 12 
Adjrad, M. time of sea state to local wind forcing 

Ruf, C.; Gleason, S.; Jelenak, Z.; The NASA EV-2 Cyclone Global IEEE Aerospace Conference 2013 Mar 13 
Katzberg, S.; Ridley, A.; Rose, R.; Navigation Satellite System 
Scherrer, J.; Zavorotny, V. (CYGNSS) mission 

Clarizia, M. P.; Ruf, C.; Jales, P.; Spaceborne GNSS-R minimum IEEE Transactions on Geoscience and 2014 Nov 14 
Gommenginger, C. variance wind speed estimator Remote Sensing 

Lang, T.; Mecikalski, J.; Li, X.; Exploring the utility of the planned 31st Conference on Hurricanes and 2014 Apr 
Chronis, T.; Brewer, A.; CYGNSS mission for investigating Tropical Meteorology, San Diego, 
Chrunside, J.; McCarty, B. the initiation and development of the CA 

Madden-Julian oscillation 

Miller, S.A.; Killough, R. L.; Onboard science processing on a Proceedings of the 2014 IEEE 2014 Mar 14 
Cook, S. W.; Ruf, C. microsatellite with limited resources Aerospace Conference, Big Sky, MT 

Park, J.; Johnson, J. T.; Lowe, S. T. Studies of GNSS-R ocean altimetry URSI National Radio Science 2014 Jan 
using full DDM-based retrieval Meeting 

Park, J.; Johnson, J. T.; Lowe, S. T. A study of the electromagnetic bias in IGARSS 2014/35th CSRS (Quebec 2014 Jul 14 
GNSS-R altimetry City, Canada) 

Powell, S.; Akos, D.; GPS SBAS L1/L5 bistatic radar IGARSS 2014 / 35th CSRS (Quebec 2014 Jul 14 
Zavorotny, V. altimeter City, Canada) 

Riley, E. M.; Maloney, E. D. Analysis of the MJO–wind speed 31st Conference on Hurricanes and 2014 Apr 
relationship in the indian ocean using Tropical Meteorology, San Diego, 
observations and models CA 

Rose, C.; Wells, W.; Rose, D.; The CYGNSS Microsatellite IGARSS 2014/35th CSRS (Quebec 2014 Jul 14 
Nave, K.; Pruitt, J.; Dickinson, J. Constellation Earth Venture Mission City, Canada) 

Rose, D.; R.; Wells, W.; Rose, D.; Nanosat technology and managed 28th Annual AIAA/USU Conference 2014 Aug 14 
Ridley, A.; Nave, K. risk; an update of the CYGNSS on Small Satellites (SmallSat), Logan, 

microsatellite constellation mission UT 
development 

Rose, R.; Gleason, S.; Ruf, C. The NASA CYGNSS mission: A SPIE Remote Sensing Conference, 2014 Sep 
pathfnder for GNSS scatterometry Amsterdam, Netherlands 
remote sensing applications 

Ruf, C.; Clarizia, M. P.; The NASA EV-2 Cyclone Global 2014 International Geoscience and 2014 Jul 14 
Gleason, S.; Rose, R.; Ridley, A. Navigation Satellite System Remote Sensing Symposium 

(CYGNSS) Mission 

Ruf, C.; Clarizia, M. P.; The NASA Cyclone Global Advanced RF Sensors and Remote 2014 Nov 14 
Gleason, S.; Rose, R.; Ridley, A. Navigation Satellite System Sensing Instruments 

(CYGNSS) mission 

Ruf, C.; Clarizia, M. P.; Enhanced spatial & temporal 31st Conference on Hurricanes and 2014 Apr 
O’Brien, A.; Johnson, J.; sampling of air/sea interaction Tropical Meteorology, San Diego, 
Ridley, A.; Yi, Y. in tropical cyclones by the NASA CA 

CYGNSS mission 

(continued) 

176 



  

 

 

 

 

 

 

 
    

 

     
     

 
    

  

 

  

 

 

 

12. Project Publications 177 

Author(s) Title Conference/journal Date 

Ruf, C.; Clarizia, M. P.; The NASA Cyclone Global 18th Conference Integrated 2014 Feb 14 
O’Brien, A.; Ridley, A.; Navigation Satellite System Observing and Assimilation Systems 
Johnson, J.; Yi, Y. (CYGNSS) mission for Atmosphere, Oceans, and Land 

Surface, AMS Annual Conference 

Ruf, C.; Ridley, A.; Clarizia, M. P.; The NASA CYGNSS mission: Design 2014 International Geoscience and 2014 Jul 14 
Gleason, S.; Rose, R.; Scherrer, J. and predicted performance Remote Sensing Symposium 

Voronovich, A.; Zavorotny, V. Full-polarization modeling of IEEE Transactions on Antennas and 2014 Mar 14 
monostatic and bistatic radar Propagation 
scattering from a rough sea surface 

Zavorotny, V.; Gleason, S.; Tutorial on remote sensing using IEEE Geoscience and Remote 2014 Dec 14 
Cardellach, E.; Camps, A. GNSS bistatic radar of opportunity Sensing Magazine 

Zavorotny, V.; Voronovich, A. Recent progress on forward scattering IGARSS 2014/35th CSRS (Quebec 2014 Jul 14 
modeling for GNSS refectometry City, Canada) 

Buchanan, M.; O’Brien, A.; Design of a ground-based beacon ION GNSS+ 2015 2015 Sep 15 
Block, B. signal for calibration of spaceborne 

GNSS remote sensing instruments 

Clarizia, M. P.; Ruf, C. S.; Target detection using GPS signals of 18th International Conference 2015 Jul 
Braca, P.; Willet, P. Opportunity on Information Fusion (Fusion), 

pp. 1429–1436 

Fritz, M.; Shoer, J.; Singh, L.; Attitude determination and control IEEE Aerospace Conference 2015 Mar 15 
Henderson, T.; McGee, J.; system design for the CYGNSS 
Rose, C. microsatellite 

Gleason, S.; Ruf, C. Overview of the delay Doppler Proceedings of the 2015 International 2015 May 
mapping instrument (DDMI) for the Microwave Symposium, Phoenix, 
Cyclone Global Navigation Satellite AZ, https://ieeexplore.ieee.org/ 
Systems Mission (CYGNSS) document/7166775 

Hannah, W. M.; Mapes, B. E.; A Lagrangian view of moisture Journal of the Atmospheric Sciences, 2015 
Elsaesser, G. S. dynamics during DYNAMO http://journals.ametsoc.org/doi/ 

abs/10.1175/JAS-D-15-0243.1 

Riley Dellaripa, E. M.; Analysis of MJO wind-fux feedbacks Journal of the Meteorological 2015 
Maloney, E. D. in the Indian Ocean using RAMA Society of Japan, http://dx.doi.org/ 

buoy observations 10.2151/jmsj.2015-021 

Rodriguez-Alvarez, N.; Generalized linear observables for Geoscience and Remote Sensing, 2015 Sep 22 
Garrison, J. L. ocean wind retrieval from calibrated IEEE Transactions 

GNSS-R delay-Doppler maps 

Rose, C.; Scherrer, J.; Wells, J. The CYGNSS fight segment: IEEE Aerospace Conference 2015 Mar 15 
Mainstream science on a 
micro-budget 

Ruf, C. S.; Atlas, R.; Chang, P. S.; New ocean winds satellite mission Bulletin of the American 2015 Jun 15 
Clarizia, M. P.; Garrison, J. L.; to probe hurricanes and tropical Meteorological Society 
Gleason, S.; Katzberg, S. J.; convection 
Jelenak, Z.; Johnson, J. T.; 
Majumdar, S. J.; O’Brien, A.; 
Posselt, D. J.; Ridley, A. J.; 
Rose, R. J.; Zavorotny, V. U. 

Said, F.; Soisuvarn, S.; Estimation of maximum hurricane wind Geoscience and Remote Sensing 2015 Jul 
Katzberg, S.; Jelenak, Z.; speed using simulated CYGNSS Symposium (IGARSS) 
Chang, P. S. measurements 

(continued) 



  

 

 

 
 

      

 

  

 
 

    
 

  
    

 

   
     

 
  

     

     

   

 

 
       

 

 
 

 

178 CCGGSS  AGDBOOK 

Author(s) Title Conference/journal Date 

Shoer, J.; Singh, L.; Henderson, T. 

Wells, J.; Scherrer, J.; 
Van Noord, J.; Law, R. 

Allen, T.; Mapes, B. E.; 
Cavanaugh, N. 

Castillo, T.; Mecikalski, J.; 
Lang, T.; Chronis, T.; Li, X. 

Chen, D. D.; Ruf, C. S.; 
Gleason, S. T. 

Chen-Zhang, D. D.; Ruf, C. S.; 
Ardhuin, F.; Park, J. 

Clarizia, M. P.; Ruf, C. S. 

Clarizia, M. P.; Ruf, C. S. 

Clarizia, M. P.; Ruf, C.; 
Cipollini, P.; Zuffada, C. 

Giangregorio, G.; 
di Bisceglie, M.; Addabbo, P.; 
Beltramonte, T.; D’Addio, S.; 
Galdi, C. 

Gleason, S.; Ruf, C.; 
Clarizia, M. P.; O’Brien, A. 

Hoover, K. 

Hoover, K.; Mecikalski, J.; Li, X.; 
Lang, T.; Chronis, T. 

Conical scanning approach for 
sun pointing on the CYGNSS 
microsatellite 

Early development of the frst earth 
venture mission: How CYGNSS is 
using engineering models to validate 
the design 

Informativeness of wind data in linear 
Madden-Julian oscillation prediction 

Understanding how CYGNSS will 
depict convective variability by 
ingesting a high temporal resolution 
WRF simulation in NASA’s end-to-
end simulator 

Response time of mean square 
slope to wind forcing: An empirical 
investigation 

GNSS-R nonlocal sea state 
dependencies: Model and empirical 
verifcation 

On the spatial resolution of 
GNSS-refectometry 

Wind speed retrieval algorithm for the 
Cyclone Global Navigation Satellite 
System (CYGNSS) mission 

frst spaceborne observation of 
sea surface height using GPS 
refectometry 

Stochastic modeling and simulation 
of delay–Doppler maps in GNSS-R 
over the ocean 

Calibration and unwrapping of the 
normalized scattering cross section 
for the Cyclone Global Navigation 
Satellite System (CYGNSS) 

Evaluation of CYGNSS in 
understanding the convective winds in 
the weak December 2011 MJO event 
captured by the DYNAMO feld 
experiment 

Use of CYGNSS in understanding 
the onset and convective properties 
in a weak MJO from the DYNAMO 
December 2011 Event 

IEEE Aerospace Conference 

IEEE Aerospace Conference 

Atmospheric Science Letters, https:// 
doi.org/10.1002/asl.666/full 

4th Symposium on Prediction of the 
Madden-Julian Oscillation: Processes, 
Prediction and Impact, 96th American 
Meteorological Society Annual 
Meeting, New Orleans, LA 

Journal of Geophysical Research: 
Oceans, 121(4), https://doi.org/10 
.1002/2016JC011661 

Journal of Geophysical Research: 
Oceans, 121(11), https://doi.org/10 
.1002/2016JC012308 

IEEE Geoscience and Remote 
Sensing Letters, 13(8), https://doi 
.org/10.1109/LGRS.2016.2565380 

IEEE Transactions on Geoscience and 
Remote Sensing, 54(8), https://doi 
.org/10.1109/TGRS.2016.2541343 

Geophysical Research Letters, 
43, https://doi.org/10.1002/ 
2015GL066624 

IEEE Transactions on Geoscience and 
Remote Sensing, 54(4), 2056–2069 

IEEE Transactions on Geoscience and 
Remote Sensing, 54(5), 2495–2509, 
https://doi.org/10.1109/TGRS.2015 
.2502245 

Master’s thesis, University of Alabama 
in Huntsville, 116pp. 

4th Symposium on Prediction of the 
Madden-Julian Oscillation: Processes, 
Prediction and Impact, 96th American 
Meteorological Society Annual 
Meeting, New Orleans, LA 

2015 Mar 15 

2015 Mar 15 

2016 

2016 Jan 9–14 

2016 

2016 

2016 

2016 Aug 

2016 

2016 Apr 

2016 

2016 

2016 Jan 9–14 

(continued) 

https://doi.org/10.1109/TGRS.2015
https://doi.org/10.1002
https://doi
https://doi
https://doi.org/10
https://doi.org/10
https://doi.org/10.1002/asl.666/full


  

 

     
   

  

     
     

 

 

  

  

  
   

 

     
   

 

     
   

 
 

       
  

 
 

 

 
 

 

     
   

12. Project Publications 179 

Author(s) Title Conference/journal Date 

Morris, M.; Chen, D. D.; Earth antenna temperature variability Proceedings of the 2016 International 2016 Jul 
Ruf, C. S. for CYGNSS Geoscience and Remote Sensing 

Symposium, Beijing, China, 
pp. 846–849, https://doi.org/10 
.1109/IGARSS.2016.7729214 

Pu, Z.; Zhang, S. Impact of CYGNSS data on 21st AMS Conference on Satellite 2016 Aug 15–19 
hurricane analyses and forecast in Meteorology, Oceanography, and 
regional OSSEs with HWRF model Climatology, Madison, WI 
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33HURRICANE/webprogram/ 
Paper340571.html 

Mayers, D.; Ruf, C. S. Measuring ice thickness with Proceedings of the 2018 International 2018 Jul 
CYGNSS altimetry Geoscience and Remote Sensing 

Symposium, Valencia, Spain, 
pp. 8535–8538, https://doi.org/10 
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Johnson, J.; Ruf, C.; Yi, Y. improvement of CYGNSS L2 wind Geoscience and Remote Sensing 
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13. Acronyms 

AC adaptive covariance 
ADC analog to digital convertor 
AER automated event recognition 
AGC automatic gain control 
ASCAT advanced scatterometer 
ATBD Algorithm Theoretical Basis Document 
ATS Absolute Time Sequence 
BB black body 
BR bin ratio 
BRCS bistatic radar cross section 
C/A clear acquisition signal 
CCSDS Consultative Committee for Space Data 

Systems 
CDR Climate Data Record 
CDR Critical Design Review 
CF netCDF Climate and Forecast (CF) 

Metadata Convention 
CFDP CCSDS File Delivery Protocol 
COAMPS-TC Coupled Ocean Atmosphere Mesoscale 

Prediction System model 
COARE Coupled Ocean-Atmosphere Response 

Experiment 
CU University of Colorado 
CCGGSS Cyclone Global Navigation Satellite 

System 
DAAC NASA Distributed Active Archive Center 
DD delay-Doppler 
DDM delay-Doppler map 
DDMA delay-Doppler map area 
DDMA delay-Doppler map average 
DDMI delay-Doppler mapping instrument 
DEM Digital Elevation Map 
DM deployment module 
DOC day of year 
E2ES end-to-end simulator 
EASE Equal-Area Scalable Earth 
ECEF Earth-centered, Earth-fxed (coordinate 

system) 
ECI Earth-centered inertial (coordinate system) 
ECMWF European Centre for Medium-Range 

Weather Forecasts 
EFOV effective feld of view 
EIRP equivalent isotropically radiated power 
EM electromagnetic 
EM engineering model 

EGSO 
EOPACE 

ERS 
ESSP 
EUMETSAT 

FDS 
FFT 
FM 
FOM 
FPGA 
FSW 
GCF 
GCPM 
GDAS 
GFDL 
GFS 
GMF 
GGSS 
GGSS-R 

GO 
GOES 

GOTS 
GPM 
GPS 
GPS-R 
WRF 

IDL 
IDW 
IF 
IFOV 
IFREMER 

IGS 
IOC 
ISRO 
ITCZ 
ITOS 
ITU 
JPL 
KA 

El Niño Southern Oscillation 
Electro-Optical Propagation Assessment in 
Coastal Environments 
European Remote Sensing Satellite 
Earth System Science Pathfnder program 
European Organisation for the Exploitation 
of Meteorological Satellites 
fully developed seas 
Fast Fourier Transform 
Flight Model 
fgure of merit 
feld-programmable gate array 
Flight Software 
gain correction factor 
GPS constellation power monitor 
Global Data Assimilation System 
Geophysical Fluid Dynamics Laboratory 
Global Forecast System (from NOAA) 
geophysical model function 
global navigation satellite system 
global navigation satellite system 
refectometry 
geometric optics 
Geostationary Operational Environmental 
Satellites 
government off-the-shelf 
Global Precipitation Measurement satellite 
global positioning system 
GPS-refectometry 
Hurricane Weather Research and 
Forecasting model 
Interactive Data Language 
integrated delay waveform 
intermediate frequency 
instantaneous feld of view 
Institut Francais de Recherche pour 
l’Exploitation de la Mer 
International GNSS Service 
initial operational capability 
Indian Space Research Organization 
intertropical convergence zone 
Integrated Test and Operations System 
International Telecommunication Union 
Jet Propulsion Laboratory 
Kirchhoff approximation 
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KDP Key Decision Point RMSD root mean squared difference 
KEO Kuroshio Extension Observatory RMSE root mean squared error 
LES leading edge slope RSS root sum square 
LGEM logistic growth equation model Rx receiving 
L CP left-hand circularly polarized SAR synthetic aperture radar 
L F latent heat fux S/C spacecraft 
LGA low noise amplifer SCG storm-centric gridded 
LUT lookup table LVPS low-voltage power SDR Sensor Data Record 

supply SFMR stepped frequency microwave radiometer 
MD5 Message-Digest Algorithm S F sensible heat fux 
MERRA Modern-Era Retrospective Analysis for S IPS statistical hurricane intensity prediction scheme 

Research and Applications SIR System Integration Review 
MJO Madden-Julian Oscillation SMAP soil moisture active passive 
MOC Mission Operations Center SMMR Scanning Multichannel Microwave 
MOST Monin-Obukhov similarity theory Radiometer 
MSS mean square slope SGC Sierra Nevada Corporation 
MV minimum variance SGR signal-to-noise ratio 
GASA National Aeronautics and Space SOC Science Operations Center 

Administration SP specular point 
GAVGEM Navy Global Environmental Model SRR System Requirements Review 
GBRCS normalized bistatic radar cross section SSA small slope approximation 
GCEP National Centers for Environmental SSA1 small slope approximation of the 1st order 

Prediction SSC Swedish Space Corporation 
GDBC National Data Buoy Center SSS sea surface salinity 
netCDF Network Common Data Form SST sea surface temperature 
GF noise fgure G C National Hurricane STOL spacecraft test and operations language 

Center SV space vehicle 
GMC Network Management Center SVG space vehicle number 
GOAA National Oceanic and Atmospheric SW signifcant wave height 

Administration SwRI Southwest Research Institute 
GRCS normalized radar cross section TA time averaging 
GSCAT NASA Scatterometer TAO Tropical Atmosphere Ocean Array 
GWP numerical weather prediction TBD to be determined 
OSCAT Ocean Scatterometer TC tropical cyclone 
PDF probability density function TDS TechDemoSat 
PDR Preliminary Design Review TOPEX Ocean TOPography Experiment 
PI principal investigator TRITOG Triangle Trans-Ocean Buoy Network 
PIRATA: Prediction and Research Moored Array in the TRMM Tropical Rainfall Measuring Mission (and 

Tropical Atlantic satellite) 
PO.DAAC NASA Physical Oceanography Distributed Tx transmitting 

Active Archive Center UK United Kingdom 
POES Polar-Orbiting Environmental Satellites UKMET UK Meteorological Offce 
PPT peak power tracker UM University of Michigan 
PRG pseudorandom number USG Universal Space Network 
RCG range corrected gain UTC Coordinated Universal Time 
RCS radar cross section WAF Woodward ambiguity function 
RFI radio frequency interference WGS World Geodetic System 
R CP right-hand circularly polarized CSLF young seas limited fetch 
RMS root mean square 



 

 

 

   
 

 

 

 

    
 

    

  

 

 

 
 

 

 
 

 

Appendix: Ocean Surface Bistatic Scattering 
Forward Model 

A.1. Propagation 

CYGNSS uses the GPS L1 frequency (1575 MHz), which 
suffers negligible rain attenuation, even under heavy precipi-
tating conditions. For completeness, the expression for rain 
path attenuation, , is given by Grain 

G ˛ exp(˝˜h(csc° ˙ csc ))° , (A.1)rain t r 

where h is the freezing level in km, α is the specifc attenu-
ation (dB km–1), and ˜t and ˜ are elevation angles to the r 

transmitter and receiver, respectively. Note that each of these 
parameters will vary over the ocean surface, and this spatial 
variation is included in the complete forward model. For 
simplicity, the model assumes a constant rain rate from the 
surface up to the freezing level. 

The specifc attenuation α is obtained from the Interna-
tional Telecommunication Union (ITU) R838-3 model, 

˜ ° aRb , (A.2) 

where R is the rain rate (mm hr–1) and the coeffcients a 
and b for circular polarization at the GPS L1 frequency 
are a = 24.312 × 10–5 and b = 0.9567. The values of the 

coeffcients have been developed by curve-ftting to power-
law coeffcients derived from scattering calculations. 

Figure A.1 shows a plot of rain attenuation versus rain rate 
for a freezing level of 6 km. In the fgure, each curve cor-
responds to a different elevation angle (the elevation angle 
to the receiver and transmitter are assumed to be equal, as 
would be the case at the specular point [SP]). 

It should be noted that in simulated hurricane wind felds, 
extremely large rain rates have been observed; however, 
these convective cells are highly localized, move very rap-
idly, and evolve very quickly. While they can have a high rain 
rate, it typically lasts for only a few minutes, so the peak 
rain rates are very high but only occur for brief periods in 
fast-moving cells. Furthermore, the nature of the GPS ambigu-
ity function causes the rain feld to be effectively smoothed 
over approximately a 20 km area (in the same way as the 
wind felds are smoothed) so that the effects of small regions 
of high rain attenuation are effectively reduced. 

A.2. Rough Surface Scattering 
A.2.1. Introduction 

In GPS bistatic radar, the complex amplitude of the received 
signal (the voltage) is cross correlated with a replica of the 

Figure A.1. Rain attenuation versus rain rate for various elevation angles. 
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emitted signal over a coherent integration time, Ti. This pro-
cedure is often referred to as match-flter signal processing. 
The end result of this type of coherent signal processing is an 
ability to form a synthetic footprint, which would ultimately 
determine the shape of the recorded 1D integrated delay 
waveform (IDW), or 2D delay-Doppler map (DDM), and the 
spatial resolution of the GPS bistatic radar. For every epoch, 
t0, the code cross correlation relative to the received signal, u, 
taken at a variety of delays, τ, can be expressed as the inte-
gral (Parkinson et al., 1996; Zavorotny & Voronovich, 2000): 

T 

Y t˜ ˛ f ° ˆ 1
i

a  t˜ ˇ t °u t  ˇ ˇ˙ ˛ °ex ˜ ˝, ,  ˙ ˜ t p 2  if t ˙°dt ˙ (A.3)0 c 0 0 c 
iT ˘ 

0 

Here Ti is the coherent integration time, and a(t) is the 
replica of the pseudorandom noise (PRN) code sequence 
taking values of {–1,+1} over a time duration, τ c . The coher-
ent integration time Ti should be comparable to or smaller 
than the coherence time, ˜ , of the scattered feld at the cor 

receiver point in order to perform the convolution procedure 
(Equation A.3) with linear phase shift between replica a(t) 
and signal u(t). The oscillating factor containing fc is meant 
to compensate for a possible Doppler shift of the signal 
u(t) associated with this phenomenon. For signals received 
from spacecraft, the signal coherence time ˜ , has beencor 

observed to be on the order of 1 ms (Gleason et al., 2005, 
2006), while signals received from aircraft can remain coher-
ent for considerably longer durations, on the order of 5–10 
ms, depending on aircraft speed and altitude. 

Only scattered waves with equal time delays and equal 
Doppler shifts could be successfully aligned with the code 
replica in order to produce a maximum correlation accord-
ing to Equation A.3, and this always happens within the 
so-called glistening zone caused by a random distribution 
of the surface slopes. The size of the glistening zone is driven 
by the variance of surface slopes, where the larger the vari-
ance of surface slopes, the larger the glistening zone extends 
across the surface. 

The scattering toward the receiver is produced mostly 
by specular refections from a statistical ensemble of large-
scale (larger than several radio wavelengths) slopes of the 
surface. Therefore, the strongest scattered signal comes only 
from the center of the glistening zone near the nominal SP 
on the mean sea surface. Away from the glistening zone, the 
contribution from the quasi-specular refections diminishes, 
eventually to be replaced with signifcantly weaker diffraction 
scattering from a small-scale surface component. This type 
of scattering can be neglected, as it is too weak to make a 
signifcant contribution to the total received signal power. As 
a result, a geometric optics–Kirchhoff theoretical model can 

be applied here (Bass & Fuks, 1979). This model represents 
the signal scattering from a rough ocean surface as a sum 
of contributions from specularly refecting surface facets. This 
approach was used in Zavorotny and Voronovich (2000) to 
derive a bistatic radar equation for the GPS scattered signal. 

The scattered GPS signal, u(t), arriving at the receiver ˜ 
position, R , can then be modeled by the integral taken over r 

the mean sea surface (Zavorotny & Voronovich, 2000), 

˜ ˜ ˜
u R˜ ,t ° D ˛ a t ˇ ˜ 0 ˜ ° ˘R t ° / c g˜˛ ,t d ˛ , (A.4)r ˆ � ˜ ° ˝

� R t  ˜ ° ˙
� ° 2 

where D˜ °˛̃  is the amplitude footprint of the receiver antenna; 
a(t) is the GPS signal PRN code; and R0(t) and R(t) are dis-
tances from the transmitter and the receiver, respectively, to 
some point ˜ ˛̃ 

,z ˙˝ ˜ ˛̃ 
,t °° on the “smoothed” rough sea 

˜
surface with an elevation of ˛ ˝˜ ,t °, fuctuating about the 
mean surface level. Over the individual local tangent planes,

˜
the Earth’s curvature is neglected; ˛ ˝ ˜x y, °; the transmitter 
and receiver positions are in the x = 0 plane, and z is a 
vertical axis or the plane normal to the surface. 

In the Kirchhoff approximation. the function g describes 
the propagation and scattering processes 

˜ ˜ 2g˜˛ ,t ° ˇ ˘� ˛ q exp�i ˜ 0 ˜ ° �R˜ °t ˆ
� ˝ 0 z˜ °  ˙ k R  t ° / 4  iR Rq , (A.5) 

where ˜ is the Fresnel refection coeffcient; q is an abso-
˜ ˜ ˜

lute value of the so-called scattering vector q k˛ ˜n m , 
where k ˛ ˜ °  is the wave number; m 

˜
 is the unit vector 

˝ ° 
2 /  

of the incident wave; and n 
˜ 

is the unit vector of the scattered 
wave. Substituting Equation A.5 into A.4 and then into A.3 
gives one a correlation complex amplitude Y t˜ 0 , ,˛ f ° of c 

the received signal expressed through the surface realiza-
tion within a footprint. This amplitude is highly fuctuating 
due to the Rayleigh fading process. To obtain an average 
correlation power as a function of a time delay and Dop-
pler frequency offset (also called a delay-Doppler map 
[DDM]), one needs to take an absolute value square of 
Y t˜ 0 , ,˛ f ° and integrate it over the accumulation time Ta,c 

which should be much longer than the coherent integration 
time Ti. It is reasonable to assume that such a temporal aver-
aging is equivalent to averaging over a statistical ensemble 
of surface elevations. As a result, we arrive at an expression 
for the delay-Doppler map: 

Ta
2 1 2 

DDM˜ °˛ ,f ˝ ˜ °,fY ˛ Y ̃ t , ,˛ f ° dt . (A.6)˝ ˙ 0 0Ta 0 

Recently, the above approach for deriving a bistatic radar 
equation for the GPS refected signal was revisited in order to 
eliminate a set of limiting assumptions made in it (Voronovich 
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& Zavorotny, 2018). One of them is the use of the Kirchhoff 
approximation in geometric optics, which assumes strong dif-
fuse (noncoherent) scattering typical for very rough surfaces. 
This equation would produce an incorrect result for the case of 
weak diffuse scattering or in the presence of coherent refec-
tion. It was shown that the assumption of strong diffuse scatter-
ing is not necessary in deriving such an equation. To derive a 
bistatic radar equation, it is necessary to assume that roughness 
statistics are spatially homogeneous. Thus the new bistatic 
equation is applicable for a much wider range of surface 
conditions and scattering geometries. This approach allows 
one to correctly describe the transition from partially coherent 
scattering to completely noncoherent, strong diffuse scatter-
ing. As shown in Voronovich and Zavorotny (2018), the DDM 
can be split into two terms, the coherent and incoherent one: 

DDM ˜ f ˛ DDM ( , )˜ f ˝DDM ˜ f , (A.7)( , )  ( , ) tot  coh n c° 

where 

DDM ( ,˝ f ) ̂coh 

P G  ̨ 2G 2 2 2T T  R 2ˇ (̋ ) ( )S f V  exp˜˘4Ra ° , (A.8)Fr  2
(4˙ )2 ˜RT � RR ° 

DDMn c˘ ( ,˝ f )� 

P G  ̨ 2G ˜ 2 ˘2 ˘2 ˜ 2T T  R ˜ 2 ˜˙ � ˝ ˙F( ) ( , ) ( ,˙) R R  ̂  (˙)d ˙ . (A.9)S f  0 0��˜4ˇ °3 

Here, PT is the transmitter power; GT is the transmit antenna 
gain; GR is the receive antenna gain; 2 ˜ ° is the annulus ˝ ˛ 
function due to the cross correlation with the replica; and 

2 
 is the Doppler zone function due to the relative motions 

of both the transmitter and receiver with respect to the scatter-
ing surface. In the coherent DDM,  is an average Fresnel 

S f˜ °

VFr 

refection coeffcient, and RT and RR are distances from a 
nominal specular point on the surface to the transmitter and 
receiver, respectively, whereas in the noncoherent DDM,

˜
R0 and R are distances from a point ˜  on the surface to 
the transmitter and receiver, respectively. Also, ˜ ° and˝2 ˛ 

2 
 in the noncoherent DDM are functions of surface 

coordinates. The ˛ ˝̃  is the normalized bistatic radar 
S f˜ °

0 ˜ °  
cross section (NBRCS) of the rough surface, which generally 
is a function of two angles: the incidence and the scattering 
angle. Here, in Equation A.9, it is written as a function of 
surface coordinates. 

The refected signal described by the coherent term is 
created by the mirrorlike image of the source in the mean 
refecting plane, the coherence of which is slightly corrupted 
by the surface roughness. This reduction of the coherence is 

2 2 exp 4  k 2 cos°described by the term ˜˛ R ° , where Ra ˛ ˜a 

is a Rayleigh parameter of the ocean rough surface having 

˜2 as a variance of surface elevations. 
If the surface roughness is small so that R  << 1, the coher-a 

ent term in Equation A.7 will dominate; if the opposite is true, 
the noncoherent term in Equation A.7 will dominate. For the 
intermediate case, both terms should be kept. For the L-band 
signal scattered from the wind-roughened ocean surface, 
R ~ 1, depending on the incidence angle, corresponds to a 

the wind speed of 1–3 m/s (and with an absence of swell), 
which does not often take place in practice. Therefore, the 
noncoherent scattering prevails in the real scenarios, which 
will be the main focus of this section. 

The noncoherent scattered signal described by Equa-
tion A.10 comes from the area formed by the intersection of 

˜2the iso-range zones (from the annulus function, ˙ ˜˛ ˝, °) 
and iso-Doppler zones (from the Doppler zone function, 

2 
S f˜ , ˛̃

 ° ). The width of the iso-range zone depends on the 
code length (different for course acquisition [C/A] and 
P codes) and on all relevant geometric parameters of 
the problem. The width of the Doppler zone depends on the 
receiver velocity and is inversely proportional to the coherent 
integration time, as given by f ˜ 2 / T .Dop  i 

The product of the correlation function °( )˜ and the Dop-
pler zone function constitutes the Woodward ambiguity func-
tion (WAF) originally introdusced in radar techniques. The 
WAF that enters Equation A.9 is similar to the WAF used 
in the unfocused synthetic aperture radar (SAR) technique 
(Elachi, 1988). For fxed positions of the transmitter and the 
receiver, both WAF and NBRCS are functions of the refer-
ence surface S coordinates. The WAF is close to unity within 
an area formed by the annulus zone and the Doppler zone 
and tends to zero outside of this area. The geometry of these 
zones for two different elevation angles for a typical space-
craft receiver is shown in Figures A.2a and A.2b. 

A.2.2. Delay and Doppler Coordinate System 

Consider the properties of the delay and Doppler zones 
in more detail. The scattered signal can be thought of as a 
superposition of components scattered from various points 
on the sea surface. Each component will have a shift in both 
the time at which the signal arrives at the receiver (delay 
shift) and the frequency of the signal (Doppler shift). The 
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(a) (b) 
Figure A.2. Surface iso- range and iso- Doppler lines for cases of 10° (a) and 40° (b) incidence. Figure taken from “GNSS Applications 
and Methods,” Gleason and Gebre- Egziabher (© 2009), reused with authors’ permission. 

diversity in delay is due to different paths followed by each 
scattered signal, while different frequency shifts are caused 
by the relative motion between the transmitter, the scatter-
ing point on the surface, and the receiver. Each point in the 
glistening zone is therefore characterized by its own delay 
and Doppler shift. 

The pair of delay- Doppler (DD) values with which each 
point in space can be associated represents a new domain 
in which the glistening zone can be mapped, and this is 
referred to as the delay- Doppler domain. Such a domain 
is fundamental for bistatic radar processing, since it is the 
domain in which bistatic radar data are commonly pre-
sented and mapped in the form of DDMs. However, different 
points on the sea surface will correspond to the same pair 
of delay- Doppler values. Lines corresponding to constant 
delays (iso- range) and constant Doppler shifts (iso- Doppler) 
can be identifed on the sea surface, and they have, respec-
tively, an elliptical and parabolic shape. Lines of constant 
delays, also called iso- range lines, are given by concentric 
ellipses around the SP, and they correspond to increasing 
delays for increasing distance from the SP, which is the point 
of minimum delay. Rigorously speaking, the iso- range lines 
are the intersections of spheroids (equi- range surfaces) hav-
ing the receiver and transmitter as foci with the sea surface, 
which causes the ellipses to be not exactly concentric as their 
centers move toward the transmitter (Zuffada et al., 2004). 
The iso- Doppler lines are parabolic- shaped lines cutting 
through the glistening zone. They are also asymmetric and 
characterized by complicated equations, and lines of lower 
and higher Doppler frequency shifts cannot be predicted, 
since they strictly depend on the relative velocities among 

the transmitter, the scattering point, and the receiver. From 
Figure A.3, we note that a generic point, P, on the glistening 
zone can be described by a delay and Doppler coordinate. 
Such a correspondence is, however, not unique, as there is 
an ambiguity, since the intersection between an iso- range 
and iso- Doppler line consists of two points in space, which 
will have the same delay and Doppler frequency, such as the 
points P and Q in Figure A.3. Despite that, it is interesting to 
note that there exists a line free of ambiguity, which can be 
thought of as the transverse axis of the hyperbolic iso- Doppler 
lines, shown in red in Figure A.3. 

The space- to- DD transformation of coordinates is also 
what gives the DDM a characteristic horseshoe shape. Such 
a transformation operates on the spatial domain by “fold-
ing” the glistening zone along the free ambiguity line and 
by “bending” it at the SP, or at the peak power point in the 
DDM. The scattered power at the SP corresponds, therefore, 
to the central point of the horseshoe shape, and the horseshoe 
branches correspond to the scattered power from the glis-
tening zone, with areas farther from the SP spanning larger 
delays and Doppler shifts. 

One other important aspect of the DD coordinate sys-
tem is its dependence on the geometry and, in particular, 
on the incidence angle, which strongly infuences the con-
fguration of the iso- delay and iso- Doppler lines. Figure A.4 
shows the change in the iso- delay contours over a footprint 
of 100 × 100 km2 for different incidence angles, where 
the incidence angle is the angle between the transmitter or 
receiver range and the normal to the surface. The iso- delay 
ellipses tend to stretch out and become wider for higher 
incidence angles. Here the transmitter and receiver altitudes 
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Figure A.3. Delay- Doppler (DD) coordinates in bistatic radar and their relation to the space coordinate system. Reused from Clarizia and 
Ruf (2016), © 2016 IEEE. 

Figure A.4. Iso- delay contours over a footprint of 100 × 100 km for the following incidence angles. Top, left to right: 23°, 34°, 43°, 53°; 
bottom, left to right: 57°, 63°, 73°, 75°. 
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have been assumed to be, respectively, equal to that of the 
GPS satellites (~20,200 km) and 475 km. 

Figure A.5 shows the range of maximum delays (a) and 
maximum Doppler frequencies (b) within a 50 × 50 km foot-
print as a function of incidence angle. In Figure A.5b, a specifc 
velocity vector has been assumed for the GPS and the receiver 
satellite. In principle, once the geometry is known (i.e., transmit-
ter and receiver altitudes, incidence angles, and velocity vec-
tors), the range of delays and Doppler frequencies spanned 
by a footprint of a given size can be calculated numerically. 

A.2.3. The Bistatic Radar Cross Section: 
Geometric Optics (GO) Approximation 

The effect of surface roughness is described by ˜0, the 
NBRCS of the rough surface. In the geometric- optics limit 
of the Kirchhoff approximation, this term is represented by 
the following expression (Barrick, 1968; Bass & Fuks, 1979): 

˛ ˝0 ˆ ˇ q q  P q / q 
2 ˜ / °4 ˜˘ ° (A.10)z ˙ z 

Although this value is a function of the scattering vector, q 
˜ 

, for fxed positions of the transmitter and the receiver above 
a surface, this vector can be regarded as a function of the ˜
coordinate ˜  in the mean surface plane. The value of ˜0 

depends on the complex Fresnel coeffcient ˜, which in 
turn depends on a signal polarization state; the complex 
dielectric constant of the refecting medium, ε; and the local 
incidence angle. In the case of GPS, the polarization state of 
the refected signal is left- hand circularly polarized (LHCP). 
In this case, the Fresnel refection coeffcient ˜ for sea water 
is (Zavorotny & Voronovich, 2000): 

˛ 2 2 ˝1 ˜ cos° ˙ ˜ ˙ sin  ° cos° ˙ ˜ ˙ sin ° 
˘� ˆ ˙ ˇ, (A.11)

2 ̂ ˇ˜ cos° � ˜ ˙ sin2 ° cos° � ˜ ˙ sin2 ° � � 

where ε is the complex dielectric permittivity of sea water, 
and θ is the local incidence angle. 

According to the Klein- Swift model (Klein & Swift, 
1977), at S = 35 ppt and T = 10°C ε = 74.62+i51.92 for 
L1 = 1.57542 GHz; ε = 75.02+i62.39 for L2 = 1.22760 
GHz; at S = 30; T = 10 ° C ε = 76.16+i55.30 for L1; and 
ε = 75.02+i62.39 for L2. 

˜Factor P s˜ ° in Equation A.10 is the probability density 
function (PDF) of large- scale “smoothed” surface slopes, 
ˆˇ  ˜ °. Usually, the most probable orientation of sur-s ̃
 

˙˛ ˝̃
 

face slopes is parallel to the mean plane, z = 0. Then the PDF 
has a maximum at s = 0, and the bistatic cross section ˜0 has 

˜
a maximum at q ° 0— that is, in the nominal specular direc-˜ 

tion with respect to the mean surface. Note that the width of 
˜0 in terms of ρ describes a glistening zone produced by 
quasi- specular points on the surface. 

Some GPS refection receivers have the capability to 
sample the waveform only with respect to time delay, τ, 
while the frequency offset f is fxed and intended to com-
pensate for the Doppler shift associated with the nominal 
SP on the Earth’s surface. In this case, we deal with 1D 
delay waveforms, as shown in Figures A.6 (a)– (d). The 
leading edge of such waveforms up to the peak value is 
produced by the central elliptic annulus zone (fltered by 
the S function) when it expands from zero to its maximal 
value. The 1D waveform forms a decreasing trailing edge 
after the peak because of the WAF’s behavior as a func-
tion of time lag and/or because of the bistatic radar cross 

(a) (b) 
Figure A.5. (a) Maximum delay as a function of incidence angle, within a 50 × 50 km2 footprint; (b) maximum Doppler frequency as a 
function of incidence angle within the same footprint. 

https://75.02+i62.39
https://76.16+i55.30
https://75.02+i62.39
https://74.62+i51.92
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Figure A.6. Examples of global navigation satellite system (GNSS) refected waveforms observed in the UK Disaster Monitoring Constel-
lation (DMC) satellite experiment on March 23, 2004, for GPS satellite PRN28 using incoherent integration times of (a) 1 ms, (b) 10 ms, 
(c) 100 ms, and (d) 1 s. Figure taken from “GNSS Applications and Methods,” Gleason and Gebre- Egziabher (© 2009), reused with 
authors’ permission. 

section (BRCS) recession in radial directions according to 
the distribution of surface slopes. As a result of the latter 
reason, the specifc shape of the leading edge and the 
exact position of the correlation power peak are func-
tions of surface roughness. For rougher surfaces, the lead-
ing edge is more stretched, and the peak is more shifted 
toward later time lags. 

Equation A.9 deals with values obtained by averaging 
over a limited number of independent samples. Such val-
ues themselves contain residual noise, which might affect 
our ability to accurately measure the average waveform 
(the issue of noise in waveforms and their impact on the 
accuracy of remote sensing of ocean wind is addressed 

in Section A.3 of this appendix). Equation A.9 relies on the 
condition that T °˜ . The coherence time can be estimated i  cor 

as ˜ ˛ ° / v , where ˜coh is the coherence length of the cor  coh r 

scattered feld at the reception point, and v  is the velocity r 

of the receiver. According to the Van- Cittert- Zernike theo-
rem, ˜coh in the far zone increases linearly with the distance 
from the instantaneous footprint patch on a scattering surface. 
The size of the footprint patch— or in our case, an annulus 
zone— depends on the current time delay between the rep-
lica and the refected signal. Therefore, a computation of 
the coherence time becomes a nontrivial problem, which 
was addressed in Zuffada and Zavorotny (2001) and You 
et al. (2004, 2006). 
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The strength of the bistatically scattered signal from the 
ocean surface is mostly affected by the surface roughness, 
since variations in salinity of the ocean are rather small. It 
is believed that for linear surface gravity waves, the slope 

˜
PDF P s˜ ° can be approximated by the anisotropic bivari-
ate Gaussian distribution (Zavorotny & Voronovich, 2000; 
Elfouhaily et al., 2002; Soulat, 2004): 

˛ † ˝˙ ˆs ˙ ˆ˜ 1 1 x °1 sxP s( )  � expˇ° � � M � �˘ , (A.12)� �s � �˘˜ det( )  ˇ
�

2 sy �2 M � �y � �  

where matrix M is 

˛cos˜0 ˙sin˜0 ˝ M ̆ ˆ ˇ � sin˜ cos˜� 0 0 � 
2˛° 0 ˝ ˛ cos˜ sin˜ ˝u 0 0ˆ ˇ �ˆ ˇ, (A.13)ˆ 0 ° 2 ˇ �˙sin˜0 cos˜0 �� c � 

where ˜0 is the angle between the up-down wind direction 
and x-axis, which is chosen here to lie within the incidence 
plane; ˜ 2 is an upwind mean square slope (MSS; upwind u 

MSS); and ˜ 2 is a cross-wind MSS (cross-wind MSS). ˜ 2 
c u c, 

are wind dependent and can be derived from a surface˜
elevation spectrum °( )˜  by integration over wave numbers 
κ smaller than a scale-dividing wave number ˜°. Sometimes, 
it is convenient to characterize the statistics of slopes by a 
single parameter, called a total MSS. There are two defni-
tions of the total MSS. One is the arithmetic mean of the two 
orthogonal components (Elfouhaily et al., 1997): 

2 2 2˜ °˜ ˛˜ . (A.14)tot,1 u c 

Another defnition of the total MSS is the geometric mean 
of the two orthogonal components (Soulat, 2004): 

˜ 2 ° 2̃ ˜ . (A.15)tot ,2 u c 

Regardless of the wind direction, Equation A.12 can be 
rewritten in general Cartesian terms as 

˜ 1
P s˜ ° � 

22˝˛ ˛ (1�b )x y  x y, 

˙ 1 ˇ s2 s s  s2 ˘ˆ 
� � x y  y ��xexp  � �2b � , (A.16)
� � x y, ˛ ˛  ��2 2 22(1�bx y, ) � ˛ x x y  ˛y ��
 

where ˜ x 
2 and ˜y 

2 are MSSs of the sea surface for two 
orthogonal components and bx y,  is the correlation coeffcient 
between two slope components: 

˜2 2 2 2˝ ˇ s ˇ ˛ ˘ ˛ d ˛ , (A.17)x y, x y, �� x y, ˜ °  
˛ ˛ˆ ˙ 

b ° s s / ̃ ˜ , (A.18)x y, x y  x y  

s s  ˆ ˛ ˛ ˇ ˛ d2˛ . (A.19)x y  ˜ °x y˘˘ 
˜ 

˛ ˛˙ ˝ 

The PDF of slopes also can be expressed in terms of the 
up-/down-wind and across the wind direction components, 
˜ 2 , and angle ˜0, introduced above in Equation A.13. u c, 

Generally, regardless of the origin of the surface roughness, 
˜0 is the angle between the x-axis and the slope distribution 
principle axis. In the case of locally generated wind waves, 
angle ˜0 is a wind direction angle. For this representation, it 
is more convenient to use a polar representation for slopes: 
s ° scos˜ ,s ° s siñ  . Then Equation A.16 takes this shape: x y 

P s, � es ˜ ˛ ° 1 

2ˆ˝ ˝u c  

2ˇ s ˘� 2 2 2 2 �exp�� � 
2 2  ��
̋ u �˝c � 2˜˝u �˝c ° cos˙0 sin˙0 cos˛ sin̨  � ��. 2̋ ˝c u  

(A.20) 

One advantage of a Gaussian distribution is that the 
variance of slope components in Equations A.16 and A.20 
can be derived solely from a wave spectrum, ˝ ˛̃

 
, of full˜ °  

surface elevations by integrating it over wave numbers, κ, 
which are smaller than a dividing parameter, ˜*. 

There are some indications that the actual PDF of slopes 
does not exactly follow a Gaussian shape at its tails (Cardel-
lach & Ruis, 2008). In terms of the glistening zone, it implies 
that this departure affects a periphery of the zone. This would 
translate into some discrepancy for the value of the wave-
form at relatively large time delays, τ, and large frequency 
offsets,  f. An ability to discern the difference caused by 
the departure from the Gaussian PDF of slopes depends 
on the residual noise in the measurements for the peripheral 
area of the DDM. 

One of the most popular models for the spectrum ˜ °˝ ˛̃
 

is the model proposed by Elfouhaily et al. (1997). The inte-
grand in Equation A.17 is called a slope spectral density. An 
example of the Elfouhaily et al. (1997) slope spectrum taken 
along the wind direction is shown in Figure A.7. 

This model describes wind-driven waves in deep water 
under diverse wave age (often called “fetch”) conditions 
and agrees with the in situ observations of the frst sun-glint 
derived wave slope measurements of Cox and Munk (1954), 

https://d2�.(A.19
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Figure A.7. An example of the Elfouhaily et al. (1997) slope spectrum taken along the wind direction for various wind speed values. 

performed several decades ago. According to the Elfou-
haily et al. (1997) model, an elevation spectrum of well-
developed, wind- driven sea surface can be represented as a 
product of the radial, or omnidirectional, part of the spectrum 
and the azimuthal part of the spectrum. The azimuthal part 
of the spectrum reproduces two main features of the direc-
tional spectrum: its anisotropy, or directionality, and  the 
wavenumber dependence of the angular spectral width. 
The azimuthal part of the spectrum is a two- sided function; 
it does not distinguish between up-  and down- wind direc-
tions. There are other situations when wind direction does not 
coincide with the maximum of the spectrum— for example, 
when gravity waves undergo refraction on currents or on 
bathymetry or waves generated by a local wind are super-
imposed with a swell or waves generated under hurricane 
conditions. Such complicated scenarios are not described 
by the Elfouhaily et al. (1997) spectrum. Also, it should be 
mentioned that the Elfouhaily et al. spectral model describes 
an average spectrum, which has a nice smooth analytical 
shape. In reality, the spectrum obtained by sampling wave 
slope data over a limited ocean area during a short period 
of time will have a substantial amount of variations. 

As was pointed out above, the MSSs that determine the 
BRCS through the PDF of slopes are not full wave slopes, 
because the sea surface contains wave harmonic components 
both larger and shorter than the L-band electromagnetic (EM) 
waves. The short waves can be disregarded in a process of 
forward quasi- specular refection under the GO approxima-
tion. Therefore, the full surface spectrum should be cut off at 
the high end of wave numbers. There are various choices of 

cutoff wave numbers, ˜°. For example, there exists a “three-
lambda” heuristic criterion for ˜° proposed by Brown (1978) 
based on ftting modeled curves for microwave backscatter-
ing cross sections with cross sections obtained in experiments 
with satellite radar altimeters. The same criterion was initially 
applied for use of the Kirchhoff approximation for the two-
scale calculations of the bistatic cross sections (Zavorotny & 
Voronovich, 2000). Later on, a reasonable ˜˛ ˝˜ cos° / 3  
on the incidence angle θ was assumed in Garrison et al. 
(2002). In Thompson et al. (2005), an expression for ˜° is 
obtained, which also contains a dependence on wind speed, 
˛˙ ˆ kcos˝ ˜1ˇU /  20° / 7.5. It was obtained by ftting 10 

modeled curves for GPS BRCSs with cross sections obtained 
in that particular aircraft experiment. 

An alternative approach is to obtain an empirical model 
for the MSS (˜ 2 ) of slopes versus wind speed by performingu c, 

multiple measurements of GPS waveforms under controlled 
wind conditions. The best ft between measured waveforms 
and modeled ones for various MSS values will give the 
sought dependence MSS versus wind speed. This approach 
was adopted in Katzberg et al. (2006). The empirical model 
from Katzberg et al. (2006) gives the following expression: 

˛˜ ˝ 0.45 ˙(0.00 0.00316f ( )U )mss˜ u 
2 ˆ 

˛˜ ˝ 0.45 ˙(0.03 0.00192 (f U)), (A.21)mss  2 ˆ° c 

where 

˝ U 

˜ ° � ˜ °f U ˆ ˙6 lnˇ U ˘ 4.0 
˙ 0.411ˇU� 

0.00 ̨ ˛U 3.49 

3.49 ̨ U ˛ 46 . (A.22) 

U � 46.0 
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Wind speed U here is m s–1 and measured at 10 m height. 
The extension of f U( ) beyond U  = 46 m s˜1  proposed in 
Katzberg et al. (2006) was rather arbitrary because GPS 
refection data were not available for such high winds. 

In Figure A.8, we present comparisons between MSS 
calculated using all three approaches: two based on the 
Elfouhaily et al. (1997) spectrum with two different cutoff 
numbers ˜° from Garrison et al. (2002) and Thompson et al. 
(2005) and the empirical one from Katzberg et al. (2006). 
Normal incidence is assumed here. 

Figure A.8 demonstrates a comparison among three 
GO models for MSS in the up-down wind direction (solid 

curves) and in the cross-wind direction (dashed curves) 
for the range of winds between 0 and 25 m/s–1. Some 
disagreement among them is seen, but overall it is not sig-
nifcant. Figure A.9 shows a comparison among three mod-
eled MSS and MSS retrieved from DDM measurements 
during aircraft experiments (Rodriguez-Alvarez et al., 2013; 
Valencia et al., 2014). 

In order to make a choice among these three models, we 
performed calculations of ˜0 using a more accurate (than the 
GO) approximation—that is, the small slope approximation, 
SSA1, which does not require the use of spectral dividing 
parameter ˜*. This material is presented below. 

Figure A.8. Comparisons between MSS calculated using three different approaches for normal incidence. 

Figure A.9. Comparison between modeled and experimentally measured MSS. 
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A.2.4. Integrated Scattering Model: The Bistatic 
Radar Cross Section in SSA 

The SSA was developed earlier (Voronovich, 1994, 1999) 
and was used successfully for solving various scattering and 
radiometric problems (see, e.g., Voronovich & Zavorotny, 
2001; Elfouhaily & Guérin, 2004; Bourlier et al., 2005; 
Johnson, 2005; Arnold- Bos et al., 2007a; Arnold- Bos et al., 
2007b; Johnson & Elfouhaily, 2007; Soriano & Guérin, 
2008; Guérin et al., 2010; Johnson & Ouellette, 2014; Voro-
novich & Zavorotny, 2014). The geometry of the scattering 
problem is shown in Figure A.10. Three typical scenarios 
are depicted, although the model considered below allows 
any possible combination of incident, scattering, and azi-
muthal angles and arbitrary polarization states. There are 
two known approximations of the SSA: the SSA of the frst 
order and the SSA of the second order. The latter is more 
accurate than the former and is required for solving back-
scattering problems with shorter EM wavelengths such as 
the X-  and K-bands. Practice shows that for the L-band and 
for the forward scattering regime, it suffces to use the SSA 
of the frst order, or SSA1. 

Note that the expression for the scattering amplitude in 
the SSA1 coincides with the expression for scattering ampli-
tude in the Kirchhoff approximation (KA) to the accuracy 
of the preintegral factor. The major difference, however, is 

˜that KA gives a correct answer only for the roughness h r˜ °  
, which is smooth on the wavelength scale; in this case, the 
corresponding integral can be evaluated by the stationary 
phase method, thus leading to the GO approximation. The 
difference between the GO and KA approximations most 
likely exceeds the accuracy of the KA itself. In contrast to 

˜the KA, SSA1 allows h r˜ ° to contain a component with 
a horizontal scale comparable to (or even less than) the 
wavelength, provided that the slope remains small. In this 
case, the corresponding integral also describes the Bragg 
scattering process and cannot be calculated by the station-
ary phase method. 

For the case of a large Rayleigh parameter, when the 
contribution from the average- feld- related terms can 
be neglected, the SSA1 gives the following expression for 
the BRCS (Voronovich, 1994; Johnson, 2005; Voronovich 
& Zavorotny, 2017): 

˜ ˜
0ˆ ( ,k k0) �˛ ˝ ˛ ˝˘ ˘, 

2 2q q  ˜ ˜  ˜ ˜4 k k  � 2 �B ˜ , 0 ° ˛ ˝ ˜k k  ° exp
�
�˜qk �q

0 
° �� 

0

2 ˛ ˝  k k B* 
˘ ˘  , 0 � k W ˜ °0 

ˇ ˜q �qk0 
°k 

˜ ˜  ̃  � 2 ˜ � ˜
� �

� ˜ � 0 °˙ �� exp� qk �qk ° W ˙ � �1 d˙ , (A.23)exp
�

� i k  k 
� ˜ ˜ °  

˙ ˙  � � 0 �  � max 

where ˜  determines the area signifcant for integration. max 
˛ ˛˜ °, ,  ˛1,2 and ˜ °, ˝1,2 are linear polarization indices 

for incident and scattering waves, respectively. Function˜ ˜  
B˛ ˝, ˜k ,k0 ° in Equation A.23 is a 2 × 2 matrix represent-
ing polarizations (1 stands for vertical and 2 stands for 
horizontal linear polarization), respectively; they depend 
on the scattering geometry and dielectric constant of the 
medium. Expressions for them can be found in Voronovich 
and Zavorotny (2001). 

Equation A.23 contains the same integral as the expres-
sion for ˜0 obtained with the Kirchhoff approximation; the 
factor in front of the integral is, however, different (see, e.g., 

Figure A.10. Bistatic scattering geometry. Reused from Voronovich and Zavorotny (2014), © 2014 IEEE. 
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Voronovich, 1999; Elfouhaily & Guérin, 2004). The most 
important difference between the Kirchhoff approximation 
and the SSA1 is that the correlation function in Equation A.23 

˜ ˜ ˜ ˜ ˜ ˜  ˜ ˜˜ °  ( ) (  ˜ ° ( )dW ˛ ˙ h r h r ˆ ˛) ˙ exp i˝ ˛ˇ ˘˝ ˝  (A.24)� 
is not generally assumed to be slowly varying (on the scale 
of wavelength) and may contain small-scale components 
responsible for Bragg scattering. The discussion of the 
superior accuracy of the SSA compared to the Kirchhoff 
approximation and discrepancies between them can be 
found in Voronovich (1999), Elfouhaily and Guérin (2004), 
Voronovich and Zavorotny (2001), and Voronovich and 
Zavorotny (2014). 

For moderate values of the Rayleigh parameter Ra, the 
exponential in Equation A.21 can be approximated by a 
polynomial with a fnite number of terms: 

˜ L (qk ˛ qk )2l ˜2 0 lexp (˝ ˛ q ) W ˜ ˙ ˆ ˇ W ˜i qk k ( ) 1  ( ). (A.25)˘ � �0 l!
l°1 

Substituting this expansion into Equation A.23 yields 

˜ ˜  ˜ ˜ ˜ ˜  
0 2 2 *˙ , ˇ ˇ( ,k k  )�16ˆq q B  k k, B ˜k ,k˛ ˝ ˛ ˝  0 k k  ˛ ˝ ˜ 0 ° ˛ ˝ˇ ˇ  0 ° 0 

2 2L (q �q ) l˘ ˜ ˜  
2 k k0 ( )l�exp�� (̆q �q ) W(0)��� l! 

� (k ˘ k )
, (A.26)k k 0 

l�1 
0 

where 

˜ 1 ˜ ˜ ˜ ˜( )l lˆ ˜ °˛ ˇ exp˜˘ �˛ ˝ W ( )d .i ° ˝ ˝ (A.27)�˜2˙ °2 

˜ ˜  
The calculation of ˜ ( ,k k0) according to Equation A.26 0 

for a not-too-large L is feasible on desktop computers. The 
number of series terms L is different for each case of inci-
dence angle and wind speed, and it is determined by the 
value of the Rayleigh parameter Ra: the larger Ra is, the larger 
the number L that should be used. Because of this, the numeri-
cal implementation based on a summation of series terms in 
Equation A.26 is more suitable for a regime of weak diffuse 
scattering characterized by moderate and small values of ˜ ˜  
Ra (low winds). Examples of ˜0( ,k k0) calculations for this 
regime can be found in Voronovich and Zavorotny (2017). 

For the case of strong diffuse scattering (Ra >> 1), there 
exists an approximate but faster method to calculate the 
SSA1 integral in Equation A.23 developed in Voronovich 
and Zavorotny (2014). Calculations using the SSA1 integral 
still require more time than the GO approximation. We use it 

here mostly to verify the accuracy of the GO results. In what 
follows, we will limit our consideration to the case of strong ˜ ˜  
diffuse scattering, which allows linking ˜ ( ,k k0) to the mean 0 

square slope of ocean waves via the GO approximation. 
Expressions for the LHCP and right-hand circularly polar-

ized (RHCP) NBRCS can be expressed through correspond-
ing cross sections for linear polarization as follows (Zuffada 
et al., 2004): 

10 0 0 0 0˙ RL ˆ ˜̇ 11,11  ˇ˙22,22 ˇ˙12,12 ˇ˙21,21 4 
RR 

˘ 0 0 0 0 0 0 �2 Re˙ � Re˙ ˜ Im ˙ ˇ˙ ˇ˙ ˇ˙ˇ ˜ 11,22  12,21 ° 11,12  11,21 12,22  21,22 ˛ ˝.� �� � 
(A.28) 

0 0Terms ˜ , ̃  and Re˜ 0  are dominant, and the 11,11  22,22 11,22 

rest can be omitted with high accuracy for near specular 
˜ 0scattering geometry. Term Re  changes sign when inci-11,22 

dence angle θ crosses the pseudo-Brewster angle, which 
is ˜Br ° 84˜ for sea water. 

We performed calculations of LHCP BRCS using Equa-
tions A.26 and A.28 and compared them with correspond-
ing BRCS based on the above described GO model for 
a typical CYGNSS setting and for a range of incidence 
angles and winds. These results are discussed below. 

A.2.5. BRCS as Function of the Incidence Angle 
and Wind: Comparisons of Three Models 

Here, we present comparisons between the SSA1 results 
and results obtained with the GO model, one using an MSS 
based on the Elfouhaily et al. (1997) spectrum and the cutoff 
frequency from Garrison et al. (2002) and another one using 
the empirical MSS model from Katzberg et al. (2006). We 
will call these two GO models the “VZ model” and the “SK 
model,” respectively. First, we present plots showing  the 
corresponding LHCP NBRCS ˜0 in a forward, specular 
direction as a function of the zenith scattering angle (which 
in this case equals the incidence angle) for a range of wind 
speeds from 4 to 30 m/s–1. The results for the VZ, KS, and 
SSA models are shown in Figures A.11a, A.11b, and A.12, 
respectively. Each plot has 12 curves. The top curve on each 
plot corresponds to wind speed U = 4 m/s–1. The rest of the 
curves correspond to 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, and 
30 m/s–1 consecutively. 

This dependence on wind speed refects the fact that 
increased wind produces a stronger surface roughness, 
which, in turn, decreases scattering in the specular direc-
tion. One can see that ˜0 behaves differently for each of 
these models at scattering angles larger than 60°–70°. 
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Remember that any of those models are valid at large scat-
tering angles, so we can disregard this discrepancy. For the 
case of a CYGNSS antenna pointing angle of about 30°, 
this discrepancy is not relevant. Note that the SK model 
from Katzberg et al. (2006) was built on GPS refection 
data obtained for low incidence/scattering angles, < 45°; 
therefore, it might not refect the actual behavior of the scat-
tering at larger angles. At the same time, all three models 
demonstrate quite similar behavior over wind speeds for 
angles below 45°. 

To investigate this behavior in more detail, we plot the 
wind dependence of ˜0 for a set of small scattering angles 
and for a fxed moderate incidence angle below 45°. Of 
interest is how predictions for ˜0 from all three models cor-
respond to each other for scattering originated from various 
points on the surface area limited to some number of delay 
zones that contribute to the DDM. The corresponding scat-
tering geometry is shown in Figure A.13. 

Notation in Figure A.13 is as follows. a  and b  are major n n 

semiaxes of the elliptic delay zones, where index n corre-
sponds to a. They can be expressed through the chip length 
l, receiver altitude H, and incidence angle ˜in: 

a ˝ bn / cos˛ , bn ˝ ˜2nlH / cos˛in °
1/2 

. (A.29)n in 

Figure A.14 shows how angles ˜sc,min, ˜  and ˜scsc,max 
from Figure A.13 can be related to the corresponding points 
on the delay-zone ellipse for a range of delay-zone indi-
ces (from 0 to 10). The curves are plotted for ˜in = 30°, 
H = 600 km, and l = 300 m (or C/A code). 

The data callout highlighted in this fgure shows that for 
the frst delay zone, the maximum azimuth scattering angle 
is equal to 2.56°. 

In Figure A.15(a–d), we present plots of ˜0 obtained 
with the three models for ˜in = 30°, H = 600 km, and 
four directions of the scattering vector described by the 

(a) VZ model (b) SK model 
Figure A.11. The LHCP NBRCS ˜0 in a forward, specular direction as a function of the zenith scattering angle for VZ (a) and SK (b) mod-
els, respectively. Reused from Zavorotny and Voronovich (2014), © 2014 IEEE. 

Figure A.12. The LHCP BRCS ˜0 in a forward, specular direction as a function of the zenith scattering angle for the SSA model. Reused 
from Zavorotny and Voronovich (2014), © 2014 IEEE. 
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Figure A.13. Scattering geometry, where an and bn are major semiaxes of the elliptic delay zones, where index n corresponds to a. 

Figure A.14. Relationship between values of scattering and zenith angles and the corresponding points on the delay- zone ellipse for a 
range of delay- zone indices (from 0 to 10). 

following combinations of zenith and azimuth scattering 
˜ ˜ ˜ ˜angles: (a) ˜ ˛ 30 ,° ˛ 0 ; (b) ˜ ˛ 30 ,° ˛ 2.56 ;sc sc sc sc 

˜ ˜ ˜ ˜(c) ˜ ˛ 28 ,° ˛ 0 ; and (d) ˜ ˛ 32 ,° ˛ 0 . This set of sc sc sc sc 

angles gives an angular extent for the frst delay zone (n = 1). 
Case (a) describes a nominal specular direction originating 
from the center of the delay zone. Case (b) describes a scat-
tering direction originating from both the left-  and right- most 
distant (in a cross direction) points of the frst delay-zone 
ellipse. This is an example of out- of- plane scattering. Here, 
by “plane” we mean a specular plane, which by defnition 
passes through the SP on the surface and both transmitter 
and receiver points. Case (c) describes a scattering direction 

originating from the closest point on the frst delay- zone 
ellipse. Correspondingly, case (d) is for the farthest point on 
the frst delay- zone ellipse. 

One can see that the curves in Figure A.15 practically 
repeat themselves at each panel. This means that while LHCP 
BRCS ˜0 is changing with the wind speed, it does not appre-
ciably change over the angles within the frst delay zone. The 
discrepancy between curves for all three models are within 
0.5 dB for wind speed below 15– 17 m/s– 1, which is rather 
negligible given such adverse factors as speckle noise and 
natural wind speed variability that accompany real measure-
ments. The discrepancy between the SSA curve and the SK 
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(a) (b) 

(c) (d) 
Figure A.15. The LHCP BRCS ˜0 at θ sc = 30° as a function of wind speed for three models for (a) a nominal specular direction originating 
from the center of the delay zone; (b) a scattering direction originating from both the left- and right-most distant (in a cross direction) points 
of the frst delay-zone ellipse; (c) a scattering direction originating from the closest point on the frst delay-zone ellipse; (d) the farthest point 
on the frst delay-zone ellipse. 

curve (which we use in the E2ES) is less than 0.5 dB for the 
entire range of wind speeds used for this simulation—that is, 
below 30 m/s–1. More important is that the slopes of these 
two curves are close to each other, which would result in a 
similar accuracy of the wind retrievals from the real bistatic 
radar data. 

In Figures A.16(a–d), we present similar plots of ˜0 

obtained with the three models for the same basic geometry 
with an angular extent for the 10th delay zone (n = 10). The 
10th delay zone covers the surface area, which contributes to 
the DDM that will be routinely used during the CYGNSS mis-

˜ ˜sion. Here, therefore, (a) ˜ ˛ 30 ,° ˛ 0 (this plot repeats sc sc 

plot [a] from the previous fgure; it is given for comparison 
˜ ˜ ˜ ˜purposes); (b) ˜ ˛ 30 ,° ˛ 8 ; (c) ˜ ˛ 25 ,° ˛ 0 ;sc sc sc sc 

˜ ˜and (d) ˜ ˛ 35 ,° ˛ 0 .sc sc 

As one can see, there is no signifcant difference between 
this set of plots and the one from the previous fgure. There-
fore, the same statement about ˜0 behavior can be made 
here for the case of the 10th delay zone. 

A.2.6. Chapter Summary 

In this chapter, we described how the NBRCS ˜0 of the 
ocean, wind-driven rough surface emerges within the frame-
work of the bistatic radar equation, which governs the aver-
age bistatic radar signal in the delay-Doppler domain. We 
presented two alternative approaches to simulate ˜0. One 
of them is based on the GO limit of the KA (Barrick, 1968; 
Bass & Fuks, 1979), and another one is the Voronovich SSA1 
(Voronovich, 1994, 1999; Voronovich & Zavorotny, 2014). 
The latter approach is superior to the former one because it 
combines two scattering mechanisms—quasi-specular refec-
tions at steep incidence and the Bragg resonant scattering 
at the shallower incidence—whereas the GO approximation 
relies only on the frst mechanism for the whole range of inci-
dence angles. Both of these approaches require knowledge 
of the ocean wave spectrum, or as in the case of the GO 
approach, the model of the MSS will suffce. To this end, 
the theoretical model based on Elfouhaily’s ocean wave 
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(a) (b) 

(c) (d) 
Figure A.16. Same as in Figure A.15 but for an angular extent that corresponds to the 10th delay zone (n = 10). 

spectrum (Elfouhaily et al., 1997) with two different frequency 
cutoffs was tested as well as the Katzberg empirical MSS 
model (Katzberg et al., 2006). All these models demonstrate 
good agreement for weak and intermediate winds. They 
depart from each other only for strong winds, and this depar-
ture is rather tolerable given such adverse factors as speckle 
noise and natural wind speed variability that accompany 
real measurements. 

Originally, the Katzberg empirical MSS model was used 
in the E2ES for simulating DDMs. This choice was made 
because this model is based on a collection of aircraft GPS 
refection measurements obtained for a large variety of 
wind speeds, including for hurricane conditions. Compari-
sons between ˜0 modeled with both the GO and the SSA 
approaches show that for the geometry of CYGNSS orbital 
observatories and for the range of winds up to 30 m/s–1, the 
GO approximation with Katzberg’s empirical MSS model 
works very well. The advantage of the GO approximation 
is its simplicity and high speed of calculations, whereas the 
SSA approximation is more time consuming. All this makes 
our choice for the ˜0 computational algorithm even more 
substantiated. 

Previously, some concerns have been expressed (see, 
e.g., Thompson et al., 2000) that the GO approximation 
might not work well for the GNSS refectometry because it 
cannot properly account for out-of-plane scattering. Gen-
erally, the GO approximation has its own limitations, espe-
cially for calculations of the RHCP ˜0 and particularly for the 
out-of-plane confguration. However, as was demonstrated 
here, for small deviations from the specular plane, the LHCP 
˜0 is quite close to the one predicted by the more accurate 
SSA approximation. 

The more fundamental limitation of all of the above mod-
els lies in the fact that either they have been proven only for 
global winds below 25–30 m/s–1 (such as for those based 
on the Elfouhaily et al. [1997] spectrum) or their accuracy 
is not high for strong hurricane winds (such as in the case of 
Katzberg’s MSS model). For hurricane conditions, a feasible 
wave-spectral model should include, apart from a local wind 
speed, also several other parameters, such as a distance 
from the hurricane center, azimuthal angle (a quadrant), the 
hurricane velocity, and other hurricane parameters. 

Recently, the analysis of MSS retrievals obtained from 
the airborne GPS refection data collected during 2008’s 
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Hurricane Ike was performed (Gleason et al., 2018). The 
detailed study of several GPS-refectometry (GPS-R) 
MSS measurement techniques across two eye transects 
of Hurricane Ike in 2008 was completed. It demonstrated 
areas of strong and weak wind/wave correlation near 
and outside the hurricane eye. The fner processing pos-
sible with the raw intermediate frequency (IF) sampled 
data allowed for a detailed comparison of MSS and 
wind speed fuctuations across the dramatically changing 
conditions in the hurricane environment. It was found that 
for these two tracks, the area ahead of the hurricane eye 
showed stronger correlation between the GPS-R MSS 
and the fight level and stepped frequency microwave 
radiometer (SFMR) wind speeds than the area behind it. 
An empirical relationship between GPSR estimated MSS 
and SFMR wind speed was derived over the full range 
of wind speeds present in the hurricane. A conclusion 
relevant to the CYGNSS mission is made that forward 
scattered L-band GPS signals can be used to monitor hur-
ricane winds with a speed up to 40 m/s, but the GPS-R 
measured MSS values may not always correlate well with 
wind speeds in some areas of a hurricane. 

These results underscore the importance of characteriza-
tion of various sources of MSS retrieval uncertainty, which 
can be divided into two groups. First, there are factors related 
to the variability of the transmit signal, uncertainties in param-
eters of the receiving system, and imperfections in L1 retrieval 
algorithms. Those factors can be eliminated, or signifcantly 
reduced, by improving calibration procedures, performing 
ancillary measurements, and perfecting the retrieval algo-
rithms. The second group of factors is related to the geo-
physical uncertainty in the spatial distribution of the MSS 
feld. Among the most important factors are the presence of 
nonlocal swell and variations in wave development (limited 
fetch). Other factors may include currents, surfactants, and 
bathymetry. 

Recently, a closed-loop L2 wind retrieval algorithm was 
proposed (Wang et al., 2018). It aims to exclude the effect 
of the nonlocal swell and limited fetch from the retrieved MSS. 
The approach is based on the calculation of an excess MSS 
responsible for the sea-state development effects using the 
IFREMER implementation of the WAVEWATCH III (WW3) 
numerical model (WAVEWATCH III Development Group, 
2016) and subtracting it from the CYGNSS measured MSS. 
The resulting MSS then should be dependent only on the 
local wind speed. This may lead to the development of more 
accurate geophysical model functions (GMFs) for the GNSS 
wind retrievals. 

A.3. Statistics of the GPS Refected Signal 
A.3.1. Mean Power and Signal-to-Noise Ratio 

Let us represent the instantaneous complex signal (the volt-
age) u, which is acquired directly by the receiver from the 
antenna output, or as a result of some coherent processing, 
in the form 

u t( )˜ s t( )° n t( ), (A.30) 

where s t( ) is the complex amplitude of the scattered signal 
and n t( ) is the complex amplitude of the additive noise. We 
assume that s t( ) and n t( ) are two uncorrelated, stationary 
random processes; both obey circular Gaussian statistics; 
and both have different time scales and different variances 

2 2 2 2 2 2˜ °˜ °˜  and ˜ °˜ °˜ , with zero means. 1  Res Ims 2  Ren Imn 

The Gaussian statistics for s t( ) can be justifed if the signal 
at the antenna is formed by contributions from a large number 
of independent surface scatterers. Here, we exclude from 
consideration fuctuations of the signal caused by propa-
gation through ionospheric and tropospheric irregularities. 
Fluctuations of s t( ) generate multiplicative, self-noise (also 
called interference noise, Rayleigh fading, and speckle 
noise), which are proportional to the signal, whereas fuctua-
tions of n t( ) produce additive, background noise (i.e., thermal 
noise or shot noise). In a more complex situation, the additive 
noise could include extraneous emitted signals. So in what 
follows, we limit that background noise to thermal noise. 

A coherent processing of the scattered GPS signal by 
the correlator channel of the CYGNSS receiver consists 
of the convolution (correlation) of voltage u t( ) with the replica 
a of the GPS broadcast signal over a relatively short (mil-
liseconds) coherent integration time Ti: 

Ti 

( , )˜ ˛
1 

a t( ˝ °) (  t ° ˜ )dt ° . (A.31)Y t  t u t  ˝ ˝0 0 0T ˙ i 0 

Taking into account Equation A.30, we obtain from Equa-
tion A.31 that 

Y t( , )˜ ° Y t( , )˜ ˛Y t( , )˜ , (A.32)0 s 0 n 0 

where 
Ti 

( , )˜ ˛
1 

a t( ˝ °) (  t ° ˜ )dt °, (A.33)Y t  t s t  ˝ ˝s 0 0 0 
iT ˙ 

0 

Ti 

( , )˜ ˛
1 

a t( ˝ °) (  t ° ˜ )dt °. (A.34)Y t  t n t  ˝ ˝n 0 0 0 
iT ˙ 

0 

https://t��)dt�.(A.34
https://t��)dt�,(A.33
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Therefore, the quantities in Equations A.33 and A.34 are 
short-integrated (practically instantaneous) correlation volt-
ages, respectively, for the signal and noise. The next step of 
the signal processing is obtaining the mean power of the 
correlator output. It is obtained by an additional averaging 
of Y t( , )˜ 2 

over a long enough observation time, so both0 

thermal and surface-induced fuctuations are substantially 
averaged out. The result is 

2 2
Y t( , )˜ ° Y t( , )˜ 2 

˛ Y t( , )˜ . (A.35)0 s 0 n 0 

The frst term in Equation A.35 is an average signal intro-
duced above in Equation A.7. The second term in Equation 
A.35 is the background noise term. It can be written as a 
double integral over the coherent integration time: 

T Ti i 

Y t( , , )˜ f 2 1 ° t a t°°  ( ˝ t  f a° t ˝ t °°, )f˛ dt d  , ) (  n 0 0 02T ˆ ˆ  
i 0 0 

*˙ n t( ˝˜ ˝ t n°) (t ˝˜ ˝ t °°) . (A.36)0 0 

Assume that the thermal noise is the “white” (δ-correlated) 
noise—that is, 

* ˜( )  ( )˜ ˜̃ ° ( ˜ ˛ ˜̃) (A.37)n t n t  kT B b  t t  ,n n  

where k is Boltzmann’s constant, T ̃  is the receiver noise equiv-
alent temperature in Kelvin, B ˜1/ T  is the receiver-front-n  cor 

end bandwidth, and T , is a temporal correlation scale cor 

of the noise fltered by the front end: 
Ti 

°b t dt; ( )  ˜ T . (A.38)n cor 

0 

Here W f( ) is the normalized temporal spectrum of n 

the noise. Usually, background noise has a much smaller 
temporal correlation scale, T , than the C/A chip length, cor 

˜chip ˛1°s. Or in other words, the noise bandwidth is much 
greater than the bandwidth of the C/A pseudorandom 
phase modulation of the GPS signals. Then we can regard 
function ( - )˜ ˜b t  t ˜ as a δ function, so two integrations over n 

time can be performed trivially. The result is 

2
Y t( , , )˜ f ° kT B˜ D, (A.39)n 0 

where B ˜1/ T  is the Doppler bandwidth of the signal. D i 

The thermal noise is correlated between delay-Doppler 
bins. The cross-correlation function between the noise in 
different bins is given by 

T T 
* 

T ˆ ˆ  *Y t( , , )  ( , , )  
1

i i 

°°  t f a t  t f˜ f Y  t ˜ ° °f ˛ dt ° dt a t( ˝ °, ) (  ̋  °°, )° n 0 n 0 0 02 
i 0 0 

*˙ n t( ˝˜ ˝ t n°) (t ˝˜ ° ˝ t °°) .(A.40)0 0 

Since the noise is uncorrelated with the reference signal, 
the reference signal acts as a flter for the noise, causing it to 
be correlated with respect to delay and Doppler according 
to the GPS C/A code ambiguity function. Equation A.40 
can be reduced to 

* ˜ 2 2
. (A.41)˜ f Y  t ˜ ° °  ˛ kT B  ˝ ( )Y t( , , )  ( , , )f d˜ S df( )n 0 n 0 D 

In the forward model, zero mean white Gaussian noise is 
generated with respect to delay and Doppler using the power 
level in Equation A.9 and then convolved with the ambiguity 
function to produce the correct bin-to-bin correlations. 

Now we can construct the signal-to-noise ratio (SNR). 
There are various defnitions of SNR. We use here the simplest 
one, which shows how much the mean power of the signal 
exceeds the mean noise level: 

2 2
SNR ° Y ( ,t ˜ ) Y (t , )˜ . (A.42)s 0 n 0 

Recall that the SNR is the function of parameters τ and fdop 

—that is, the SNR is different for different portions of wave-
forms taken at different time delays and Doppler frequency 
offsets. 

A.3.2. Statistics of the Partially Averaged 
Refections From Thermal and Speckle Noise 

Previously, we considered the effect of additive thermal noise 
on the average SNR. It exists due to the physical tempera-
ture of both the receiver and the scene even in the absence 
of the GPS refected signal. Another type of noise, the multi-
plicative one, is a result of distractive and constructive inter-
ference of coherent signals arriving at the antenna upon 
scattering from a rough ocean surface. It is called Rayleigh 
fading, or speckle noise, and it is proportional to the signal 
itself. Below we consider statistics of the partially averaged 
signal affected by both thermal and speckle noise. 

In a real situation, we deal with values averaged over a 
fnite time interval. It happens for at least two reasons. First, 
any measuring device has a fnite time response. Second, 
signals often need to be accumulated over some time in 
order to improve the SNR. Since the integration or averag-
ing time is fnite, the procedure does not lead to constant 
time-independent values. These partially averaged val-
ues are still random quantities and need to be described 

https://��)(A.37
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in statistical terms. Note that an instantaneous power U of 
the signal + noise is not only composed of the sum of the 
instantaneous powers S and N for the signal and the noise, 
respectively. It also contains cross terms of s and n. Indeed, 
according to Equation A.30, 

2 * *U t( )˛ u t( )  ˝ ˜s t( )˙ n t( )° ˜s t( )˙ n t( )° ˝ˆ ˇ ˆ ˇ 
*S t( )˙ N t( )˙ C t( )˙C t( ), (A.43) 

where 

*C t( )˜ s t n t  . (A.44)( )  ( )  

During the measurement, we obtain an estimate of the 
signal + noise from the power of the received signal + noise 
averaged over an arbitrary time interval T (a bar above refers 
to that type of averaging): 

*U t( )˙ S t( )ˆ N t( )ˆC t( )ˆ C t( )ˇ 

T /2 
*1 ° ( N t t ) C t  C t t )˛ ˝S t ˆ t )̋ˆ ( ˆ ˝ ˆ ( ˆ t )̋ˆ ( ˆ ˝ dt . (A.45)� ˘ �T 

˜T /2 

An estimate of the signal can be done by obtaining an 
estimate of the signal + noise, then obtaining an estimate of 
noise from an independent measurement, and then subtract-
ing one from another: 

S t˜( )˜ U t( )°N t( ). (A.46)0 

Since these estimates are obtained from an averaging 
over a fnite period of time, the estimate of the signal, S t˜( ), is 
a fuctuating quantity. The accuracy of the estimate is gov-
erned by the variance of estimate S t˜( ). Since U t( ) and N t( )0 

are statistically independent, the following equality holds: 

2 2 2˜ ̃  °˜ ˛˜ . (A.47)S U N 

Observe that the mean value of the estimated power of 
the signal + noise is simply 

U ˜ S ° N . (A.48) 

The variance of the total power of signal + noise is 
2

T /2 
2* ° U . (A.49)˜U 

2 ˆ 
1 ˛S t( )̇ˇ N t( )̇ˇC t( )̇ˇC t( )̇˝dt ˙ 
2 � ˘ �T 

°T /2 

The variance of the noise power is 

2
T /2

1 2
( )̨ ˛  ° N . (A.50)˜ 2 ˝

2 
N t  dtN ˙T 

°T /2 

Assuming statistical stationarity of both the signal and the 
noise and making several additional simplifying assumptions, 
without loss of generality, the standard deviation of the esti-
mated signal power can be obtained in the following form: 

1/2 ˛ S̃ ˙ 2 ˆˇ ˘ S ˘ 2 /˝ S / N . (A.51)1 2  T˜ int cor ° � �S � � 

For T °°˜  the parameter N T° /˜  is the number of cor cor 

correlation intervals contained within the measurement time, 
T. Or it could be interpreted as a number N of independent 
samples. 

In order to proceed further, we need to choose the value 
of the correlation time of the signal, ˜ . The approach for cor 

calculation of the correlation time is based on the power 
spectrum of the scattered signal or, equivalently, through the 
coherence function of the signal that was developed in Zuf-
fada and Zavorotny (2001) and You et al. (2004, 2006). 

Actually, the time correlation can be estimated using the 
Van Cittert-Zernike theorem. From it, it follows that the size of 
the feld correlation zone at the wavelength λ is 

r ° ˜R / D, (A.52)cor 

where R is a distance from the surface to the receiver and 
D is the size of the illuminated area. At the peak correlation 
power, the illuminated area is the frst annulus zone modi-
fed by the smaller Doppler zone. The smallest size matters 
because it created the biggest r , which translates into the cor 

largest correlation time ˜ ° r / v  (see, e.g., Figure 1 cor  cor sat 

in Zuffada & Zavorotny, 2001). The size of the Doppler zone 
is dictated by the coherent integration time. The analysis 
shows that ˜ ° 2Ti , therefore, if T is 1 ms, ˜ ° 2 ms.cor  i cor 

Taking this into account, Equation A.51 simplifes to 

1/2 ˛ S̃ ˙1 ˙1 ˙2 ˙1/2 1 1/ˆ S 
ˇ ˆ S ˆ2 ˝ N˜1 2  Tint cor S ° ˘ . (A.53)

S N 

From here we can produce an expression for the standard 
deviation of S after incoherent averaging over N statistically 
independent samples: 

S °1
˜ ̃  ˛ . (A.54)S N 

Similarly, the standard deviation of partially averaged 
SNR is proportional to the average SNR plus one divided 
by N . In a general case of arbitrary and ˜ ,Tint cor 
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2
SNR  ˝ 2SNR ̋  2T ˜ ˛1 

int cor ° ˙ . (A.55)SNR 
N 

A.4. Simulation of Speckle Noise 
The refected signal received by each CYGNSS observa-
tory is formed by contributions from a large number of 
independent surface scatterers. This random scattering 
generates multiplicative self-noise (i.e., Rayleigh fading or 
speckle noise), which is proportional to the signal. This is 
in contrast to thermal noise, which is additive. This section 
describes how this speckle noise is accounted for in the 
forward model. 

Recall the bistatic radar Equation A.9 for the noncoherent 
component. The expected value of the power of the refected 
signal versus delay and Doppler can be rewritten as 

2 ˜ ˜ 2 2Y t( , , )˜ f ˛ H ° ˝2 ˜ °( )  ( , ) ( , )S f  °̃
 

d ° , (A.56)s 0 ˙˙ 
where 

˜ P G  ̨ 2G ˜T T  R ˇ2 ˇ2H( )˝ ˘ R R ˙ ( )˝ (A.57)
3˜4ˆ ° 

0 0 

represents the contribution of each location on the surface 
to the total expected power of the refected signal at a 
particular delay and Doppler. 

In the forward model, DDMs are formed from integra-
tions performed over fnite time intervals rather than expected 
values (such as in Equation A.56). We must model the effect 
of speckle noise, but for the surface areas involved in space-
borne GPS refectometry, it would be unrealistic to instantiate 
the actual random rough surface and use a computational 
electromagnetics approach. Rather, we have chosen a suit-
able one to accurately capture the effects of speckle noise. 

First, we take the square root of the power contribution in 
Equation A.57 and include a time-varying phase term ˜ °( ,t ) 
to make the contribution complex: 

˜ °h t( ,°)˛ H e( )° j t( , ). (A.58) 

This is an approximate representation of the contribution 
of each location on the surface to the voltage DDM and 
can be thought of as the transfer function over the surface. 
The approximate voltage DDM is given by 

˜ ˜ ˜
Y t ˜ f ˛ ( ,  ) ( , ) ( ,  )° ˝˜ °  S f d° . (A.59)( ,  , )  h t ° s ˙˙ 2 

The DDM is formed by integrating for 1 second, t will be 
between t0 and (t0 + 1), where t0 is the start of the integra-
tion. This produces 

t T° 0 

*Y ts 0 ˜ f( , , )  ˛ ˝ Ys ( ,  , )˜ Y ts ˜ f dt 
2 

t f  ( , , )  , (A.60) 
t0 

where T =1. The phase term ˜ °t  must be chosen such ( ,  ) 
that the expectation of Equation A.60 is equal to one from 
Equation A.56. Also, it must result in the temporal correlation 
of speckle noise. 

First, a random phase, ˜ °( ), is associated with each 0 

location on the surface. This random phase is assumed to be 
uniformly distributed between 0 and 2˜  and represents the 
phase shift caused by the random rough surface at that loca-
tion. This phase will evolve in time according to the changing 
geometry of the satellites. Thus, the total phase associated 
with the refection of a particular point on the surface is a 
combination of the random phase and the phase associated 
with the total path length, 

2˜° ˛( )˙° ˛( )ˆ R t( ,˛). (A.61)0 ˝ 

where λ is the wavelength at the GPS L1 center frequency 
and R t( ,˜) is the total path length from the transmitter to the 
surface location at ρ and up to the receiver at time t. Since 
it is such a short duration, the time variation in the path length 
can be accurately approximated using the Doppler at the 
start of the integration f t( , ),0 ˜D

( , )  ( , ) (t t  )  ( , ).R t  ̃ ˛ R t  ˜ ˝ ˝ °f t  ̃  (A.62)0 0 D 0 

Each point on the surface will exhibit a different time-
varying phase depending on the relative motion of the satel-
lites. Over short time delays (e.g., less than one millisecond), 
the change in geometry will be small, and the speckle noise 
will remain correlated in time. For longer delays, the speckle 
noise will be completely decorrelated, as is expected from 
refections from a real ocean surface. 

A.5. References 

Arnold-Bos, A., Khenchaf, A., & Martin, A. (2007a). Bistatic 
radar imaging of the marine environment—part I: Theo-
retical background. IEEE Transactions on Geoscience 
and Remote Sensing, 45(11), 3372–3383. https:// 
doi.org/10.1109/TGRS.2007.897436. 

Arnold-Bos,  A., Khenchaf,  A., & Martin,  A. (2007b). 
Bistatic radar imaging of the marine environment—part 

https://doi.org/10.1109/TGRS.2007.897436


 

        

      
  

 
 

   
     

 
 
 

        

 
 

     
     

 
 

       

       
 

 
  

     

         
 

 

        

 
      

 
       

    
    

 

       

 

    
    

      
  

Appendix: Ocean Surface Bistatic Scattering Forward Model 213 

II: Simulation and results analysis. IEEE Transac-
tions on Geoscience and Remote Sensing, 45(11), 
3384–3396. https://doi.org/10.1109/TGRS.2007 
.899812. 

Barrick,  D.  E. (1968). Relationship between slope prob-
ability density function and the physical optics inte-
gral in rough surface scattering. Proceedings of the 
IEEE, 56(10), 1728–1729. https://doi.org/10.1109/ 
PROC.1968.6718. 

Bass,  F.  G., & Fuks,  I.  M. (1979). Wave scattering from 
statistically rough surfaces (Vol. 93). Elmsford, NY: 
Pergamon. 

Bourlier, C., Déchamps, N., & Berginc, G. (2005). Com-
parison of asymptotic backscattering models (SSA, 
WCA, and LCA) from one-dimensional Gaussian 
ocean-like surfaces. IEEE Transactions on Antennas 
and Propagation, 53(5), 1640–1652. https://doi 
.org/10.1109/TAP.2005.846800. 

Brown,  G.  S. (1978). Backscattering from a Gaussian-
distributed perfectly conducting rough surface. IEEE 
Transactions on Antennas and Propagation, 26(3), 
472–482. https://doi.org/10.1109/TAP.1978.1141854. 

Cardellach, E., & Rius, A. (2008). A new technique to sense 
non-Gaussian features of the sea surface from L-band 
bi-static GNSS refections. Remote Sensing of Envi-
ronment, 112(6), 2927–2937. https://doi.org/10 
.1016/j.rse.2008.02.003. 

Clarizia,  M.  P., & Ruf,  C. (2016). Wind speed retrieval 
algorithm for the Cyclone Global Navigation Satellite 
System (CYGNSS) mission. IEEE Transactions on Geo-
science and Remote Sensing, 54(8), 4419–4432. 
https://doi.org/10.1109/TGRS.2016.2541343. 

Cox, C., & Munk, W. (1954). Measurement of the rough-
ness of the sea surface from photographs of the Sun’s 
glitter. Journal of the Optical Society of America, 
44(11), 838–850. https://doi.org/10.1364/JOSA 
.44.000838. 

Elachi,  C. (1988). Spaceborne radar remote sensing: 
applications and techniques. New York: IEEE Press. 

Elfouhaily, T., Chapron, B., Katsaros, K., & Vandemark, D. 
(1997). A unifed directional spectrum for long and 
short wind-driven waves. Geophysical Research: 
Oceans (1978–2012), 102(C7), 15781–15796. 
https://doi.org/10.1029/97JC00467. 

Elfouhaily, T. M., & Guérin, C. A. (2004). A critical survey 
of approximate scattering wave theories from random 
rough surfaces. Waves in Random Media, 14(4), 

R1–R40. https://doi.org/10.1088/0959-7174/14/ 
4/R01. 

Elfouhaily, T., Thompson, D. R., & Linstrom, L. (2002). Delay-
Doppler analysis of bistatically refected signals from 
the ocean surface: Theory and application. IEEE Trans-
actions on Geoscience and Remote Sensing, 40(3), 
560–573. https://doi.org/10.1109/TGRS.2002 
.1000316. 

Garrison,  J.  L., Komjathy,  A., Zavorotny,  V.  U., & Katz-
berg,  S.  J. (2002). Wind speed measurement using 
forward scattered GPS signals. IEEE Transactions on 
Geoscience and Remote Sensing, 40(1), 50–65. 
https://doi.org/10.1109/36.981349. 

Gleason,  S. (2006). Remote sensing of ocean, ice and 
land surfaces using bistatically scattered GNSS sig-
nals from low Earth orbit (Unpublished doctoral dis-
sertation). University of Surrey. 

Gleason,  S., Hodgart,  S., Sun,  Y., Gommenginger,  C., 
Mackin,  S., Adjrad,  M., & Unwin,  M. (2005). 
Detection and processing of bistatically refected 
GPS signals from low Earth orbit for the purpose of 
ocean  remote sensing. IEEE Transactions on Geo-
science and Remote Sensing, 43(6), 1229–1241. 
https://doi.org/10.1109/TGRS.2005.845643. 

Gleason,  S., Zavorotny,  V., Akos,  D., Hrbek,  S., Popste-
fanija, I., Walsh, E., Masters, D., & Grant, M. (2018). 
Study of surface wind and mean square slope correla-
tion in Hurricane Ike with multiple sensors. IEEE Journal 
of Selected Topics in Applied Earth Observations and 
Remote Sensing, 11(6), 1975–1988. https://doi.org/ 
10.1109/JSTARS.2018.2827045. 

Guérin,  C.-A., Soriano,  G., & Chapron,  B. (2010). The 
weighted curvature approximation in scattering from 
sea surfaces. Waves in Random and Complex Media, 
20(3), 364–384. http://dx.doi.org/10.1080/ 
17455030903563824. 

Johnson, J. T. (2005). A study of ocean-like surface thermal 
emission and refection using Voronovich’s small slope 
approximation. IEEE Transactions on Geoscience and 
Remote Sensing, 43(2), 306–314. https://doi.org/ 
10.1109/TGRS.2004.841480. 

Johnson,  J. T., & Elfouhaily, T. M. (2007). Computation of 
oceanlike surface thermal emission and bistatic scat-
tering with the reduced local curvature approximation. 
IEEE Transactions on Geoscience and Remote Sens-
ing, 45(7), 2108–2115. https://doi.org/10.1109/ 
TGRS.2006.890420. 

https://doi.org/10.1109
https://doi.org
http://dx.doi.org/10.1080
https://doi.org
https://doi.org/10.1109/TGRS.2005.845643
https://doi.org/10.1109/36.981349
https://doi.org/10.1109/TGRS.2002
https://doi.org/10.1088/0959-7174/14
https://doi.org/10.1029/97JC00467
https://doi.org/10.1364/JOSA
https://doi.org/10.1109/TGRS.2016.2541343
https://doi.org/10
https://doi.org/10.1109/TAP.1978.1141854
https://doi
https://doi.org/10.1109
https://doi.org/10.1109/TGRS.2007


  

        

     

        

 

  

      
  

 
 

      
  

 

        

 

   
     

 

  
      

 

 
      

    

  
 

 
     

 

 
       

 
       

       
 

       
   

 
   

     

 

      
  

214 CCGGSS  AGDBOOK 

.1141539. 

Johnson, J. T., & Ouellette, J. D. (2014). Polarization features 
in bistatic scattering from rough surfaces. IEEE Trans-
actions on Geoscience and Remote Sensing, 52(3), 
1616–1626. https://doi.org/10.1109/TGRS.2013 
.2252909. 

Katzberg, S. J., Torres, O., & Ganoe, G. (2006). Calibra-
tion of refected GPS for tropical storm wind speed 
retrievals. Geophysical Research Letters, 33(18). 
https://doi.org/10.1029/2006GL026825. 

Klein, L., & Swift, C. T. (1977). An improved model for the 
dielectric constant of sea water at microwave frequen-
cies. IEEE Transactions on Antennas and Propagation, 
25(1), 104–111. https://doi.org/10.1109/TAP.1977 

Parkinson, B. W., Spilker, J. J., Axelrad, P., & Enge, P. (eds.). 
(1996). Global positioning system: Theory and appli-
cations (Vol. II). Washington, DC: AIAA. 

Rodriguez-Alvarez,  N., Akos,  D.  M., Zavorotny,  V.  U., 
Smith,  J. A., Camps, A., & Fairall, C. W. (2013). Air-
borne GNSS-R wind retrievals using delay-Doppler 
maps. IEEE Transactions on Geoscience and Remote 
Sensing, 51(1), 626–641. https://doi.org/10.1109/ 
TGRS.2012.2196437. 

Soriano,  G., & Guérin,  C.-A. (2008). A cutoff invariant 
two-scale model in electromagnetic scattering from 
sea surfaces. IEEE Geoscience and Remote Sensing 
Letters, 5(2), 199–203. https://doi.org/10.1109/ 
LGRS.2008.915746. 

Soulat, F. (2004). Sea surface remote sensing with GNSS 
and sunlight refections (Unpublished doctoral disser-
tation). Universitat Politecnica de Catalunya. 

Thompson, D. R., Elfouhaily, T. M., & Garrison, J. L. (2005). 
An improved geometrical optics model for bistatic 
GPS scattering from the ocean surface. IEEE Transac-
tions on Geoscience and Remote Sensing, 43(12), 
2810–2821. https://doi.org/10.1109/TGRS.2005 
.857895. 

Thompson,  D.  R., Elfouhaily,  T.  M., & Gasparovic,  R.  F. 
(2000). Polarization dependence of GPS signals 
refected from the ocean. In IGARSS 2000—2000 
IEEE International Geoscience and Remote Sens-
ing Symposium (Vol. 7, pp. 3099–3101). https://doi 
.org/10.1109/IGARSS.2000.860349. 

Valencia, E., Zavorotny, V. U., Akos, D. M., & Camps, A. 
(2014). Using DDM asymmetry metrics for wind direc-
tion retrieval from GPS ocean-scattered signals in air-
borne experiments. IEEE Transactions on Geoscience 

and Remote Sensing, 52(7), 3924–3936. https:// 
doi.org/10.1109/TGRS.2013.2278151. 

Voronovich, A. G. (1994). Small-slope approximation for 
electromagnetic wave scattering at a rough inter-
face of two dielectric half-spaces. Waves in Random 
Media, 4(3), 337–368. https://doi.org/10.1088/ 
0959-7174/4/3/008. 

Voronovich, A. G. (1999). Wave scattering from rough sur-
faces (2nd ed.). Berlin: Springer. 

Voronovich,  A.  G., & Zavorotny,  V.  U. (2001). Theoreti-
cal model for scattering of radar signals in K 

u - and 
C-bands from a rough sea-surface with breaking 
waves. Waves in Random Media, 11(3), 247–269. 
https://doi.org/10.1080/13616670109409784. 

Voronovich,  A.  G., & Zavorotny,  V.  U. (2014). Full-
polarization modeling of monostatic and bistatic radar 
scattering from a rough sea surface. IEEE Transactions 
on Antennas and Propagation, 62(3), 1362–1371. 
https://doi.org/10.1109/TAP.2013.2295235. 

Voronovich,  A.  G., & Zavorotny,  V.  U. (2017). The transi-
tion from weak to strong diffuse radar bistatic scatter-
ing from rough ocean surface. IEEE Transactions on 
Antennas and Propagation, 65(11), 6029–6034. 
https://doi.org/10.1109/TAP.2017.2752219. 

Voronovich, A. G., & Zavorotny, V. U. (2018). Bistatic radar 
equation for signals of opportunity revisited. IEEE 
Transactions on Geoscience and Remote Sensing, 
56(3), 1959–1968. https://doi.org/10.1109/TGRS 
.2017.2771253. 

WAVEWATCH III Development Group. (2016). User man-
ual and system documentation of WAVEWATCH III 
version 5.16 MMAB (Technical Note, 326 pp.+App). 
https://polar.ncep .noaa .gov/mmab/papers/ 
tn276/MMAB_276.pdf. 

You, H., Garrison, J. L., Heckler, G., & Smajlovic, D. (2006). 
The autocorrelation of waveforms generated from 
ocean-scattered GPS signals. IEEE Geoscience and 
Remote Sensing Letters, 3(1), 78–82. https://doi 
.org/10.1109/LGRS.2005.856704. 

You,  H., Garrison,  J.  L., Heckler,  G., & Zavorotny,  V.  U. 
(2004). Stochastic voltage model and experimental 
measurement of ocean-scattered GPS signal statistics. 
IEEE Transactions on Geoscience and Remote Sens-
ing, 42(10), 2160–2169. https://doi.org/10.1109/ 
TGRS.2004.834628. 

Zavorotny, V. U., & Voronovich, A. G. (2000). Scattering of 
GPS signals from the ocean with wind remote sensing 

https://doi.org/10.1109
https://doi
https://polar.ncep.noaa.gov/mmab/papers
https://doi.org/10.1109/TGRS
https://doi.org/10.1109/TAP.2017.2752219
https://doi.org/10.1109/TAP.2013.2295235
https://doi.org/10.1080/13616670109409784
https://doi.org/10.1088
https://doi.org/10.1109/TGRS.2013.2278151
https://doi
https://doi.org/10.1109/TGRS.2005
https://doi.org/10.1109
https://doi.org/10.1109
https://doi.org/10.1109/TAP.1977
https://doi.org/10.1029/2006GL026825
https://doi.org/10.1109/TGRS.2013


 

    
   

 
       

 

 
 

       

       
 

Appendix: Ocean Surface Bistatic Scattering Forward Model 215 

application. IEEE Transactions on Geoscience and 
Remote Sensing, 38(2), 951–964. https://doi.org/ 
10.1109/36.841977. 

Zavorotny, V. U., & Voronovich, A. G. (2014, July). Recent 
progress on forward scattering modeling for GNSS 
refectometry. In Geoscience and Remote Sens-
ing Symposium (IGARSS), 2014 IEEE International 
(pp.  3814–3817). https://doi.org/10.1109/IGARSS 
.2014.6947315. 

Zuffada, C., Fung, A., Parker, J., Okolicanyi, M., & Huang, E. 
(2004). Polarization properties of the GPS signal 

scattered off a wind-driven ocean. IEEE Transac-
tions on Antennas and Propagation, 52(1), 172–188. 
https://doi.org/10.1109/TAP.2003.822438. 

Zuffada, C., & Zavorotny, V. (2001). Coherence time and 
statistical properties of the GPS signal scattered off the 
ocean surface and their impact on the accuracy of 
remote sensing of sea surface topography and winds. 
In Geoscience and Remote Sensing Symposium, 
2001. IGARSS’01. IEEE 2001 International (Vol. 7, 
pp. 3332–3334). https://doi.org/10.1109/IGARSS 
.2001.978344. 

https://doi.org/10.1109/IGARSS
https://doi.org/10.1109/TAP.2003.822438
https://doi.org/10.1109/IGARSS
https://doi.org



	Cover
	Title
	Copyright
	Contents
	Revision History
	Key Authors
	Preface
	Acknowledgments
	1. Introduction and Background
	2. Mission Overview
	3. Constellation Design
	4. Data Product Overview
	5. Instrument Calibration and Error Analysis
	6. Level 2 Mean Square Slope Retrieval
	7. Level 2 Wind Speed Retrieval Algorithm
	8. Level 2 Ocean Surface Heat Flux Product
	9. Level 3 Wind Speed Science Data Products
	10. Level 3 Soil Moisture Product
	11. Level 1 and 2 Uncertainty Analyses
	12. Project Publications
	13. Acronyms



